tinh gia tri bieu thuc : 1999 x a +2,88 : b -a x (2014 + 1378)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho bieu thuc A = ( 1/ x^2 - x + 1/x-1):x+1/x^2 -2x +1 ( x khac 0;1;-1)
a) Rut gon bieu thuc A
b) Tinh gia tri bieu thuc A khi x=2014/2013
c)Tim dieu kien cua x de A co gia tri lon hon 1
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
tính giá trị biểu thức của 1999 x a+2,88 : b - a x (2014+1378)
tính giá trị biểu thức của : a) 1999 x a + 2,88 : b - a x (2014 + 1378 )
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
tinh gia tri bieu thuc :
a/ 1+(1+2)+(1+2+3)+...+(1+2+3+...+2014)
b/ 1 x 2014+2x2013+3x2012+...+2014x1
Cho bieu thuc A = \(^{x2+4x+3}\)
a Tinh gia tri bieu thuc tai x= \(\frac{-1}{2}\)
b Tinh gia tri x de bieu thuc A bang 0
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
tim gtnn cua bieu thuc sau (x^2 -9x)^2+ |y-2 | +10
tinh gia tri bieu thuc E = x^10 - 2014 x^9 -2014 x^8 - ... - 2014 x -1 biet x=2015
a)
\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
b)
cách 1: ghép tạo số hạng (x-2015)
E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015
hoặc
x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản
-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014
(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014
cho bieu thuc A=[x+2/x^2-x+x-2/x^2+x].x^2-1/x^2+2
a) tim dieu kien cua x de gia tri cua bieu thuc A duoc xac dinh
b) tinh gia tri cua bieu thuc A voi x = -200
a) \(A=\left[\dfrac{x+2}{x^2-x}+\dfrac{x-2}{x^2+x}\right].\dfrac{x^2-1}{x^2-x}\)
\(A=\left[\dfrac{x+2}{x\left(x-1\right)}+\dfrac{x-2}{x\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\left[\dfrac{\left(x+2\right)\left(x+1\right)+\left(x-2\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\left[\dfrac{x^2+2x+x+2+x^2-2x-x+2}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\dfrac{2x^2+4}{x\left(x^2-1\right)}.\dfrac{x^2-1}{x^2+2}\)
\(A=\dfrac{2\left(x^2+2\right)\left(x^2-1\right)}{x\left(x^2-1\right)\left(x^2+2\right)}=\dfrac{2}{x}\)
b) Thay \(x=-200\) vào biểu thức \(A=\dfrac{2}{x}\) ta được :
\(A=\dfrac{2}{x}=\dfrac{2}{-200}=\dfrac{-2}{200}=\dfrac{-1}{100}\)
tinh gia tri bieu thuc A=(a-b)^20+(b-c)^11+(a-c)^2014