Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hảo
Xem chi tiết
Trần Thị  Vy
15 tháng 8 2021 lúc 9:07

khó vậy 

Khách vãng lai đã xóa
Yêu chị hai
15 tháng 8 2021 lúc 9:08
🤨🤨??????
Khách vãng lai đã xóa
Hajin
Xem chi tiết
Nguyễn Mai Linh Chi
24 tháng 8 2015 lúc 13:06

AI MUỐN KẾT BẠN VỚI MÌNH KHÔNG VẬY ?

Nguyễn Hữu Thế
24 tháng 8 2015 lúc 13:32

ố 29 phút trước tui làm gì lên

Nguyễn Hoàng Phúc
8 tháng 8 2016 lúc 8:57

Hỏi từng chút có được ko dzậy

do thanh dat
Xem chi tiết
Phùng Thị Minh Nguyệt
Xem chi tiết
 Huyền Trang
Xem chi tiết
Trần Minh Hoàng
3 tháng 10 2018 lúc 18:56

Ta có:

\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{100}\right)\)

\(=0+\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)

\(=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)

Tam bui thanh
Xem chi tiết
Ngọc Hân Cao Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 11 2023 lúc 21:40

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

Hoàng Bảo Ngọc
Xem chi tiết
Jeon Jungkook
14 tháng 7 2018 lúc 20:13

A= \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

2A= \(2.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\right)\)

2A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)

⇒ 2A- A= \(1-\dfrac{1}{2^{100}}\)

⇒ A= \(1-\dfrac{1}{2^{100}}\)

B= \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

3B= \(3.\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)

3B= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

⇒ 3B- B= \(1-\dfrac{1}{3^{100}}\)

⇒ B.(3-1)= \(1-\dfrac{1}{3^{100}}\)

⇒ 2B= \(1-\dfrac{1}{3^{99}}\)

⇒ B= \(\left(1-\dfrac{1}{3^{99}}\right):2\)

⇒ B= \(\dfrac{1}{2}-\dfrac{1}{2.3^{99}}\)

Đặng Kiều Trang
Xem chi tiết
Không Tên
29 tháng 7 2018 lúc 10:08

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

\(\Rightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow\)\(A=2-\frac{1}{2^{100}}\)

\(B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow\)\(3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\)

\(\Rightarrow\)\(3B-B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow\)\(2B=3-\frac{1}{3^{100}}\)

\(\Rightarrow\)\(B=\frac{3-\frac{1}{3^{100}}}{2}\)