tìm x:
y+37,5+y x 2=111,9
tìm x:
x + 37,5 + x .2=111,9
\(x+37,5+x2=111,9\)
\(x+2x+37,5=111,9\)
\(x\cdot\left(1+2\right)+37,5=111,9\)
\(3x=111,9-37,5=74,4\)
\(x=\frac{74,4}{3}=24,8\)
X+37,5+Xx2=111,9
Tìm x,y biết:
x-y=2(x+y)=x:y
x+y=xy=x:y
Tìm x,y biết:
x-y=2(x+y)=x:y
x+y=xy=x:y
Tìm x,y biết:
x-y=2(x+y)=x:y
x+y=xy=x:y
a) x - y = 2(x+y) => x - y = 2x + 2y => x - 2x = y + 2y => - x = 3y => x: y = -3 và x = -3y
Mà x - y = x: y nên (-3y) - y = -3 => -4y = -3 => y = 3/4 => x = -9/4
b) Tương tự,
a) x - y = 2(x+y)
=> x - y = 2x + 2y
=> x - 2x = y + 2y
=> - x = 3y
=> x: y = -3 và x = -3y
do x - y = x: y nên (-3y) - y = -3
=> -4y = -3
=> y = \(\frac{3}{4}\)
=> x = \(-\frac{9}{4}\)
P/s hok tốt
Tìm số hữu tỉ x,y sao cho:
a/ x-y=2(x+y)=x:y
b/ x+y=xy=x:y
a) Ta có: x - y = 2( x + y )
=> x - y = 2x + 2y
=> x - 2x = 2y + y
=> -x = 3y
=> x : y = -1/3
Mà x - y = 2( x + y) = x : y
=> x - y = 2( x + y) = x : y = -1/3
=> x + y = -1/3 : 2 = -1/6
=> x = ( -1/6 - 1/3 ) : 2 = -1/4
=> y = -1/6 + 1/4 = 1/12
Vậy x = -1/4; y = 1/12
Tìm hai số hữu tỉ x,y sao cho:
a) x-y=2(x+y) = x:y
b) x+y = x.y =x:y
a/
\(x-y=2\left(x+y\right)\Rightarrow x=-3y\)
\(x-y=\frac{x}{y}\Rightarrow-3y-y=\frac{-3y}{y}=-3\Rightarrow-4y=-3\Rightarrow y=\frac{3}{4}\)
\(x=-3.\frac{3}{4}=-\frac{9}{4}\)
b/
\(xy=\frac{x}{y}\Rightarrow xy^2=x\Leftrightarrow x\left(y^2-1\right)=0\)\(\Leftrightarrow x=0\) hoặc \(y^2=1\)
+TH1: \(x=0\) \(0+y=0.y=\frac{0}{y}=0\Rightarrow y=0\)(loại do \(y\ne0\) (y là mẫu số)
+TH2: \(y^2=1\) \(\Rightarrow\) \(y=1\) hoặc \(y=-1\)
\(y=1\) thì \(x+1=x.1\Rightarrow1=0\) (vô lí)
\(y=-1\) thì \(x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2};y=-1\)
tìm hai số hữu tỉ x,y biết rằng:
a) x-y=x.y=x:y
b) x-y=2.(x+y)=x:y
Đề `:` Tìm `x;y` biết `:`
`a.` `x:y=20:9` và `x-y=-44`
`b.` `x:y=` 2 `1/2` và `x+y=40`
`c.` `x:3=y:16` và `3x-y=70`
`d.` `x/2` `=y/7` và `x`. `y=56`
a) Ta có: \(\dfrac{x}{y}=\dfrac{20}{9}\Rightarrow\dfrac{x}{20}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-44}{11}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=20\cdot-4=-80\\y=-4\cdot9=-36\end{matrix}\right.\)
b) \(\dfrac{x}{y}=2\dfrac{1}{2}\Rightarrow\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}\Rightarrow\dfrac{x+y}{5+2}=\dfrac{40}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}\text{x}=\dfrac{40}{7}\cdot5=\dfrac{200}{7}\\y=\dfrac{40}{7}\cdot2=\dfrac{80}{7}\end{matrix}\right.\)
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{16}=\dfrac{3x-y}{3\cdot3-16}=\dfrac{70}{-7}=-10\)
=>\(x=-10\cdot3=-30;y=-10\cdot16=-160\)
d: Đặt \(\dfrac{x}{2}=\dfrac{y}{7}=k\)
=>x=2k; y=7k
x*y=56
=>\(2k\cdot7k=56\)
=>\(14k^2=56\)
=>\(k^2=4\)
TH1: k=2
=>\(x=2\cdot2=4;y=7\cdot2=14\)
TH2: k=-2
=>\(x=-2\cdot2=-4;y=-2\cdot7=-14\)