Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trúc
Xem chi tiết

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Lê Quỳnh Trang
Xem chi tiết
Ngo Tung Lam
20 tháng 4 2018 lúc 21:35

Ta có :

\(S=\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+.......+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}\)

\(\Rightarrow S< \frac{1}{17}+\frac{1}{17}+......+\frac{1}{17}+\frac{1}{17}+\frac{1}{17}\)

\(\Rightarrow S< \frac{1}{17}.48\)

\(\Rightarrow S< \frac{48}{17}\)

\(\Rightarrow S< 2\)( 1 ) 

Lại có :

\(S>\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}+\frac{1}{64}+\frac{1}{64}\)

\(\Rightarrow S>\frac{1}{64}.48\)

\(\Rightarrow S>\frac{3}{4}\)( 2 ) 

Từ ( 1 ) và ( 2 ) suy ra : \(\frac{3}{4}< S< 2\)

Vậy \(1< S< 2\left(ĐPCM\right)\)

Trần Thụy Kiều Trang
Xem chi tiết
bỏ mặc tất cả
7 tháng 4 2016 lúc 20:48

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)

suy ra S<1/5+1/12.3+1/60.3

S<1/5+1/4+1/20

S<1/2 

Duc Kim
7 tháng 4 2016 lúc 20:46

S<1/2

Cô bé dễ thương
13 tháng 4 2017 lúc 16:52

S=\(\frac{1}{5}\)+(\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\)) + (\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\))

=> S< \(\frac{1}{5}+\frac{1}{12}.3+\frac{1}{60}.3\)

S<\(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}\)

=> S< \(\frac{1}{2}\)

Vậy S<\(\frac{1}{2}\)

rongxanh
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
Joy Eagle
Xem chi tiết
Yuuki Asuna
Xem chi tiết
Nguyễn Duy K hánh
Xem chi tiết
Trần Minh Hoàng
11 tháng 3 2021 lúc 17:18

Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).

Thành Hoàng
Xem chi tiết
Phi Phạm
Xem chi tiết
huy phạm
12 tháng 5 2022 lúc 8:24

dễ mà