\(\sqrt{1}+\sqrt{4}+\sqrt{9}+.........+\sqrt{400}+\sqrt{441}\)
Tính \(\sqrt{1}-\sqrt{4}+\sqrt{9}-\sqrt{16}+\sqrt{25}-\sqrt{36}+.....-\sqrt{400}\)
EEEEEEEEEEEEEE ĐÉ
\(\sqrt{1}-\sqrt{4}+\sqrt{9}-\sqrt{16}+\sqrt{25}-\sqrt{36}+...-\sqrt{400}\)
\(=1-2+3-4+5-6+...-400\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(399-400\right)\)
\(=-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\) (200 số hạng -1)
\(=\left(-1\right).200=-200\)
A = \(\sqrt{\frac{1}{9}+\frac{1}{16}}\)
B = \(\sqrt{4+36+81}\)
C = \(\sqrt{1^{3^{ }}+}2^3\)
E = \(\left(\sqrt{\frac{1}{9}+\sqrt{\frac{25}{36}-\sqrt{\frac{49}{81}}:}\sqrt{\frac{441}{324}}}\right)\)
F = \(-4.\sqrt{\frac{1}{16}+3.\sqrt{\frac{1}{9}}-}5.\sqrt{0,04}\)
Mg các bạn giúp mik ạ
Cảm ơn ạ
\(\sqrt{\frac{1}{9}+\frac{1}{16}}\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(\sqrt{4+36+81}\)
\(=\sqrt{121}\)
\(=\pm11\)
\(\sqrt{1^3}+2^3\)
\(=\sqrt{1}+8\)
\(=1+8\)
\(=9\)
5\(\sqrt{16}\)-4\(\sqrt{9}\)+\(\sqrt{25}\)-0,3\(\sqrt{400}\)
E = \(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
Xét phân thức phụ sau:
Ta có: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\frac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)
\(=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thay vào ta được:
\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Đặt biểu thức đã cho là A
Tổng quát ta có: Với \(a\inℕ^∗\)ta có:
\(\frac{1}{\left(a+1\right)\sqrt{a}+a.\sqrt{a+1}}=\frac{\left(a+1\right)-a}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}\)
\(=\frac{\left(\sqrt{a+1}-\sqrt{a}\right)\left(\sqrt{a+1}+\sqrt{a}\right)}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}\)
\(=\frac{\sqrt{a+1}}{\sqrt{a}.\sqrt{a+1}}-\frac{\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}\)
Áp dụng kết quả trên ta có:
Với \(n=1\)\(\Rightarrow\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Với \(n=2\)\(\Rightarrow\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
Với \(n=3\)\(\Rightarrow\frac{1}{4\sqrt{3}+3\sqrt{4}}=\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\)
.....................
Với \(n=399\)\(\Rightarrow\frac{1}{400\sqrt{399}+399\sqrt{400}}=\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+......+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-\sqrt{400}\)
\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-\sqrt{400}\)
\(=5.4-4.3+5-20\)
\(=20-12+5-20\)
\(=-7\)
5√16−4√9+√25−√400
=5.4−4.3+5−20
=20−12+5−20
=8+5-20
=13-20
=-7
\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(5\sqrt{16}-4\sqrt{9}-\sqrt{25}-0,3\sqrt{400}\)
\(=5.4-4.3+5-0,3.20\)
\(=20-12+5-6\)
\(=7\)
\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(5.\sqrt{16}-4.\sqrt{9}+\sqrt{25}-0,3.\sqrt{400}\)
\(=5.4-4.3+5-\frac{3}{10}.20\)
\(=20-12+5-6\)
\(=8+5-6\)
\(=13-6\)
\(=7\)
=5*4-4*3+5-0.3*20
=20-12+5-6
=8+5-6
=13-6
=7
a)\(\sqrt{16}\)+\(\sqrt{225}\).\(\sqrt{9}\)
b)\(\sqrt{\dfrac{10000}{400}}\)+\(\sqrt{\left(-3\right)^2}\).\(\sqrt{6^4}\)
giup mik ai nhanh mik se tick cho
a) \(\sqrt{16}+\sqrt{225}.\sqrt{9}=4+15.3=4+45=49\)
b) \(\sqrt{\dfrac{10000}{400}}+\sqrt{\left(-3\right)^2}.\sqrt{6^4}=\dfrac{100}{20}+\sqrt{9}.\sqrt{36^2}=5+3.36=5+108=113\)
b. \(\sqrt{\dfrac{10000}{400}}+\sqrt{\left(-3\right)^2}.\sqrt{6^4}=\dfrac{100}{20}+3.6^2=5+3.36=5+108=113\)