Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dugpah
Xem chi tiết
Akai Haruma
25 tháng 11 2023 lúc 17:49

Lời giải:

$7x^2-24y^2=41$

$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$

$\Rightarrow x^2\equiv 0,1\pmod 3$

$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)

$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.

 

dugpah
Xem chi tiết
Lê Song Phương
25 tháng 11 2023 lúc 19:27

 Cách khác (xét theo mod 8): Giả sử tồn tại 2 số nguyên x, y thỏa mãn \(7x^2-24y^2=41\) 

\(\Leftrightarrow7x^2-24y^2=48-7\)

\(\Leftrightarrow7\left(x^2+1\right)=24\left(y^2+2\right)\) (*)

 Do \(\left(7,24\right)=1\) nên từ (*), ta có \(x^2+1⋮24\) \(\Rightarrow x^2+1⋮8\)

 Từ đó x phải là số lẻ. Nhưng nếu như vậy thì \(x^2\equiv1\left[8\right]\) dẫn đến \(x^2+1\equiv2\left[8\right]\), vô lí.

 Vậy điều giả sử là sai \(\Rightarrow\) pt đã cho không có nghiệm nguyên.

 

 

dugpah
Xem chi tiết
Akai Haruma
25 tháng 11 2023 lúc 17:49

Lời giải:

$7x^2-24y^2=41$

$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$

$\Rightarrow x^2\equiv 0,1\pmod 3$

$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)

$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.

 

dugpah
Xem chi tiết
Akai Haruma
25 tháng 11 2023 lúc 18:17

Nguyễn Thị Thương Hoài
25 tháng 11 2023 lúc 18:25

7\(x^2\) - 24y2 = 41

Nếu \(x\) ⋮ 3 ⇒ 7\(x^2\) - 24y2 ⋮ 3 ⇒ 41 ⋮ 3 (vô lý loại)

Nếu \(x\) không chia hết cho 3

⇒ \(x^2\) = 3k + 1(theo tính chất của số chính phương số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)

Thay \(x^2\) = 3k + 1 vào biểu thức 7\(x^2\) - 24y2 ta có: 

    7.(3k + 1) - 24y2 = 41

⇒ 21k + 7 - 24y2 = 41

    21k - 24y2 = 41 - 7

    3.(7k - 8y2) = 34 ⇒ 34 ⋮ 3 (vô lý loại)

Vậy không có giá trị nguyên nào của \(x\) thỏa mãn phương trình hay phương trình đã cho không có nghiệm nguyên (đpcm)

 

 

 

 

Nguyễn Thiện Minh
Xem chi tiết
Phan...............
Xem chi tiết
Akai Haruma
10 tháng 7 2021 lúc 11:39

Lời giải:

Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$

Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.

Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên

$x^2+y^2+z^2=2015$

$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$

$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$

$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$

Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.

Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.

nguyễn quỳnh lưu
Xem chi tiết
Le Hung Quoc
22 tháng 9 2017 lúc 20:30

tk nha 

nguyễn quỳnh lưu
22 tháng 9 2017 lúc 20:40

là sao

nguyễn thị hồng hạnh
Xem chi tiết
Nguyễn Thị Kiểm
Xem chi tiết