Tính giá trị đa thức
B=9x^10-12x^7+6x^4+3x+2010
Biết rằng 3x^9-4x^6+2x^3+1=0
Tính giá trị của đa thức
A=4x^4+7x^2y^2+3y^4+5y^2 với x^2+y^2=5
B=9x^10-12x^7+6x^4+3x+2010 tại x thỏa mãn 3x^9-4x^6+2x^3+1=6
giải giúp mình nha
Thực hiện phép chia:
a) \((3x^5-9x^6+12x^9):3x\)
b) \((6x^4+4x^3+8x^2):(2x)\)
c) \((8x^6+16x^5-10x^4):(2x^4)\)
d) \((4x^4+6x^5+14x^7):(2x^3)\)
a: =x^4-3x^5+4x^8
b: =2x^3+2x^2+4x
c: =4x^2+8x-5
d: =2x+3x^2+7x^4
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
2.Dùng định nghĩa hai phân thức bằng nhau,hãy tìm đa thức A trong đảng thức sau
a,\(\dfrac{A}{3x+1}\)=\(\dfrac{9x^2-6x-1}{3x-1}\) b,\(\dfrac{2x-3}{A}\)=\(\dfrac{6x^2-7x-3}{12x+4}\)
c,\(\dfrac{12x+4}{4x+28}\)=\(\dfrac{A}{2x^2+8x-21}\) d,\(\dfrac{x^2+4x+4}{x^2-4}\)=\(\dfrac{x^2+3x+2}{A}\)
d: \(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{A}\)
hay A=x-2
Help me
Cho đa thức:
1. A(x)=6x4-4x2-3+9x+5x2-7x-2x4+4-2x-4x4
Tính giá trị của A(x) biết /3x-1/=1/2
2.Cho đa thức B(x)=(2x+3)2+1
Tìm x biết B(x) có giá trị bằng hỗn số 3 7/9
MK ĐANG CẦN GẤP AI NHANH 3 TICK
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
Câu 2:
Theo đề, ta có:
\(B\left(x\right)=\left(2x+3\right)^2+1=3\frac{7}{9}\)
\(\left(2x+3\right)^2=\frac{34}{9}-1=\frac{25}{9}\)
TH1: \(2x+3=\frac{-5}{3}\Rightarrow2x=\frac{-5}{3}-3=-\frac{14}{3}\)
TH2: \(2x+3=\frac{5}{3}\Rightarrow2x=\frac{5}{3}-3=\frac{-4}{3}\)
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
B=9x^3-12x^7+6x^4+3x+2018 tại x thỏa mãn:3x^9-4x^6+2x^3 +1=0 ^là dấu mũ ae jup vs
Phân tích đa thức thành nhân tử
a) x^3+5x^2+3x-9
b)x^3+6x^2+11x+6
c)x^3+5x^2-3x-15
d)3x^3-4x^2+12x-16
e)2x^4-9x^2-5
Phân tích đa thức thành nhân tử (đặt ẩn phụ)
a) (6x+7)^2(3x+4)(x+1)-6
b) (x-2)^2(2x-5)(2x-3)-5
c) (2x-1)(x-1)(x-3)(2x+3)+9
d) (4x+1)(12x-1)(3x+2)(x+1)-4