Tìm GTLN, GTNN của A= 2x+5/2x-1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Tìm GTNN của P = x^2 -2x+3
b) Tìm GTLN của M = -x^2 - 2x + 5
hông biết mới học lớp 6 làm seo biết đc toán lớp 8 tự nghĩ đi nha
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
a, P = x2- 2x + 3
P= ( x2 -2x +1) +2
= ( x-1)2 +2
ta có : ( x -1)2 \(\ge0\forall x\)=> (x-1)2 +2 \(\ge0+2\)=> P\(\ge\)2
dấu = xảy ra <=> ( x-1)2=0
=> x-1=0 => x=1
vậy GTNN của P=2 tại x=1
b, M= -( x2-2x+5)
M= - [( x2 -2x +1) +4]
= -( x-1)2-4
ta có: -( x-1)2 \(\le0\forall x\) => -( x-1)2 -4 \(\le0-4\) => M \(\le-4\)
dấu = xảy ra <=> -( x-1)2 =0
=> ( x-1 )20 => x-1 =0
=> x=1
vậy GTLN của M = -4 tại x =1
Bài 1: Tìm gtnn của A= 1 + căn x-2
Bài 2: Tìm gtln của B= 5- căn 2x-1
1) ta có
\(\sqrt{x-2}\ge0\)với mọi x
=>A=1+\(\sqrt{x-2}\ge1\)
dấu "=" xảy ra khi:
x-2=0
<=>x=2
Vậy GTNN của A là 1 tại x=2
2)
ta có :
\(-\sqrt{2x-1}\le0\)
=>B=5-\(\sqrt{2x-1}\le5\)
Dấu "=" xảy ra khi:
2x-1=0
<=>2x=1
<=>x=1/2
Vậy GTLN của B là 5 tại x=1/2
Bài 1: Tìm gtnn của A= 1 + căn x-2
Bài 2: Tìm gtln của B= 5- căn 2x-1
a, Tìm GTNN của B= 4,2 + \(\left|x+1,5\right|\)
b,Tìm GTLN của C= \(\dfrac{4}{5}-\left|2x+1\right|\)
\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)
a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2
Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔ x = - 1,5
Vậy Bmin= 4,2 ⇔ x= -1,5
b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)
Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)
Vậy Cmax = \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)
Tìm GTLN(GTNN) của biểu thức:
A = 2(2x+3)^2+5
A = 2(2x + 3)2 + 5
vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5
A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)
a) TÌm GTNN của A=4/5+│2x-3│
b) Tìm GTLN của B=1/2(x-1)2+3
a, A= 4/5 + l 2x-3 l
vì lxl >hoặc= 0
=) l 2x-3 l >hoặc= 0
=) 4/5 + l 2x-3 l >hoặc= 4/5
=) A đạt GTNN là 4/5 khi 2x-3 = 0 =) x=3/2
b, B = 1/2(x-1)2+ 3
vì x2 > hoặc = 0 =) (x-1)2 > hoặc = 0
=) 1/2(x-1)2 > hoặc = 0
=) 1/2(x-1)2+ 3 > hoặc = 3
vậy GTNN của B=3 khi x-1=0=) x=1 (ở đây ko thể đc là GTLN bn ak vì sau 1/2(x-1)2 là dấu + và 1/2(x-1)2 luôn dương nên khi cộng 3 vào sẽ lớn hơn 3 )
tìm GTLN và GTNN của biểu thức sau :
D= -(2x-3)2-3
E= (2x-5)2+(y+1/2)2+2022
a: (2x-3)^2>=0
=>-(2x-3)^2<=0
=>D<=-3
Dấu = xảy ra khi x=3/2
b: (2x-5)^2>=0
(y+1/2)^2>=0
=>(2x-5)^2+(y+1/2)^2>=0
=>D>=2022
Dấu = xảy ra khi x=5/2 và y=-1/2
Tìm GTNN,GTLN nếu có :A=2x^2-6x+5/x^2-2x+1