Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoài Đức CTVVIP
Xem chi tiết
Nguyễn Anh Tú
Xem chi tiết
ghdoes
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Yen Nhi
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Khách vãng lai đã xóa
kiêu ngọc minh
Xem chi tiết
Phan Thị Phương Anh
Xem chi tiết
CookieGuy
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2019 lúc 0:18

\(\left(x+y\right)^2+6\left(x+y\right)+9+y^2-3=0\)

\(\Leftrightarrow\left(x+y+3\right)^2+y^2-3=0\Leftrightarrow\left(x+y+3\right)^2=3-y^2\le3\)

\(\Rightarrow\left(x+y+3\right)^2\le3\Rightarrow-\sqrt{3}\le x+y+3\le\sqrt{3}\)

\(\Rightarrow-3-\sqrt{3}\le x+y\le-3+\sqrt{3}\)

\(\Rightarrow\left\{{}\begin{matrix}S_{max}=-3+\sqrt{3}\\S_{min}=-3-\sqrt{3}\end{matrix}\right.\)

dung2005 nguyenminh
Xem chi tiết