S=2015/2016+2016/2017+2021/2018
so sánh S với 3
So sánh S với 3, biết \(S=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2015}\)
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
so sánh :
A=2015/2016+2016/2017+2017/2015 với 3
So sánh:
a) A = 102016 - 2 / 102017 - 2 và B = 202015 + 1 / 102016 + 1
b) A = 20162017 - 3 / 20162018 - 3 và B = 20162016 + 3 / 20162017 + 3
c) A = 20172016 - 2015 / 20172017 - 2015 và B = 20172015 + 1 / 20172016 + 1
so sánh hai phân số A=2015/2016+2016/2017+2017/2018 và 2015+2016+2016/2016+2017+2018
Homie ơi, giúp mình với:
1) So sánh:
a) -2015/2016 và -2016/2017
b) 2017/-2016 và 2016/-2015
a: 2015/2016=1-1/2016
2016/2017=1-1/2017
mà 1/2016>1/2017
nên 2015/2016<2016/2017
=>-2015/2016>-2016/2017
b: 2017/2016=1+1/2016
2016/2015=1+1/2015
mà 1/2016<1/2015
nên 2017/2016<2016/2015
=>-2017/2016>-2016/2015
Cho biểu thức A= 2015/2016+2016/2017+2017/2015. Hãy so sánh biểu thức đó với 3
ta có 2015/2016+2016/2017+2017/2015=(1-1/2016)+(1-1/2017)+(2+1/2015)
=4-(1/2016+1/2017-1/2015)
1/2016<1; 1/2017<1 nên 1/2016+1/2017<2 suy ra 1/2016+1/2017-1/2015<1(vì 1/2015<1)
4-(1/2016+1/2017-1/2015)>4-1=3
2015/2016+2016/2017+2017/2015>3
cho mik nhé
A = 15/14 + 16/15 + 17/16 + 18/17
SO SÁNH A VỚI 4
B = 2015/2016 + 2016/2017 + 2016/2019
SO SÁNH B VỚI 3
a, Ta có :
\(A=\dfrac{15}{14}+\dfrac{16}{15}+\dfrac{17}{16}+\dfrac{18}{17}\)
\(\Leftrightarrow A=\left(1+\dfrac{1}{14}\right)+\left(1+\dfrac{1}{15}\right)+\left(1+\dfrac{1}{16}\right)+\left(1+\dfrac{1}{17}\right)\)
\(\Leftrightarrow A=\left(1+1+1+1\right)+\left(\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}\right)\)
\(\Leftrightarrow A=4+\left(\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}\right)\)
\(\Leftrightarrow A>4\)
b. \(B=\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2019}\)
\(\Leftrightarrow B=\left(1-\dfrac{1}{2016}\right)+\left(1-\dfrac{1}{2017}\right)+\left(1-\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B=\left(1+1+1\right)-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B=3-\left(\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{3}{2019}\right)\)
\(\Leftrightarrow B< 3\)
so sánh :
2015/2016+2016/2017+2017/2018+2018/2015 với 4
2015/2016+2016/2017+2017/2018+2018/2015 < 4