chứng minh ps sau tối giản
a,A=12n+1/30n+2 b,B=14n+17/21n+25
Chứng minh phân số sau là ps tối giản :
a. A = 12n+1/30n+2 b. B = 14n+17/21n/25
a) \(A=\frac{12n+1}{30n+2}\)
Gọi d là UCLN (12n+1 ; 30n +2 )
\(\Rightarrow12n+1⋮d\)\(;\) \(30n+2⋮d\)
\(\Rightarrow5.\left(12n+1\right)⋮d\)\(;\) \(2.\left(30n+2\right)⋮d\)
\(\Leftrightarrow60n+5⋮d\)\(;\)\(60n+4⋮d\)
\(\Rightarrow60n+5-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d=1hoac\left(-1\right)\)\(\Rightarrow dpcm\)
Phần b) bạn ghi chưa rõ, 14n+17/21n/25 là sao, nhưng mink làm vậy, ai thấy đúng thì ủng hộ nha.
Chứng minh các phân số sau là phân số tối giản
\(A=\dfrac{12n+1}{30n+2}\) \(B=\dfrac{14n+17}{21n+25}\)
Bài 34: chứng minh các phân số sau là các phân số tối giản :
a) A= 12n+1/30n+2 b) B= 14n+17/21n+25
Giải:
a) \(A=\dfrac{12n+1}{30n+2}\)
Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}5.\left(12n+1\right)⋮d\\2.\left(30n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(A=\dfrac{12n+1}{30n+2}\) là p/s tối giản
b) \(B=\dfrac{14n+17}{21n+25}\)
Gọi \(ƯCLN\left(14n+17;21n+25\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3.\left(14n+17\right)⋮d\\2.\left(21n+25\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(B=\dfrac{14n+17}{21n+25}\) là p/s tối giản
Chúc bạn học tốt!
Chứng minh các phân số sau là các phân số tối giản:
a) A = 12n+1/30n+2
b) B = 14n+17/21n+25
b. Gọi d là ƯCLN của 14n+17 và 21n+25
Ta có: * 14n+17 chia hết cho d
=> 3 (14n+17) chia hết cho d
=> 42n+51 chia hết cho d
* 21n+25 chia hết cho d
=> 2 (21n+25) chia hết cho d
=> 42n+50 chia hết cho d
Ta lại có:
42n+51 - (42n+50) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> B là phân số tối giản
nhấn đ-ú-n-g cko mìh nhaz
a,(12n+1;30n+2)=1
12n+1 chia hết cho d
30n+2 chia hết cho d
<=>60n+5 chia hết cho d
60n+4 chia hết cho d
=>(12n+1 - 30n+2)=(60n+5)-(60n+4)=1
Phần b như của bạn Lê Song Thang Nhã nha
Chứng minh các phân số sau là phân số tối giản
a) A=12n+1/30n+1
b) B=14n+17/21n+25
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
Chứng minh các phân số sau là phân số tối giản
A=12n+1/30n+2
B=14n+17/21n+25
a, \(A=\frac{12n+1}{30n+2}\)
Gọi \(d=ƯCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
b, \(B=\frac{14n+17}{21n+25}\)
Gọi \(d=ƯCLN\left(14n+17;21n+25\right)\)
\(\Rightarrow\hept{\begin{cases}14n+17⋮d\\21n+25⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+51⋮d\\42n+50⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
#Giải:
a) Gọi d = ƯC (12n + 1, 30n + 2 )
Xét hiệu :
(30n + 2) - (12n + 1) chia hết cho d
2(30n + 2) - 5 (12n + 1 ) chia hết cho d
60n + 4 - 60n - 5 chia hết cho d
4 - 5 chia hết cho d
=> -1 chia hết cho d
=> d € Ư (-1)
Ư (-1) = { 1 ; -1 }
Vậy A là phân số tối giản
b)*Tương tự*
Chứng tỏ các phân số sau là các phân số tối giản:
a) A = 12n + 1/30n + 2
b) B = 14n + 17/21n + 25
Chứng minh phân số sau phân số tối giản :
a, A=\(\frac{12n+1}{30n+2}\)
b, B=\(\frac{14n+17}{21n+25}\)
a. Để a tối giản thì UCLN của 12n+1 và 30n+2 là 1
Gọi UCLN của 12n+1 và 30n+2 là d
Ta có
\(12n+1⋮d;30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=\left(60n+5\right)-\left(60n+4\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy A là phân số tối giản
b
Gọi UCLN của 14n+17 và 21n+25 là d
Ta có
\(14n+17⋮d;21n+25⋮d\)
\(\Rightarrow3\left(14n+17\right)-2\left(21n+25\right)=\left(42n+51\right)-\left(42n+50\right)=1⋮d\)
\(\Rightarrow d=1\)
vậy B là phân số tối giản
Từ đây mik rút ra công thức tổng quát nhé!
Nếu chỉ cần tìm được các số tự nhiên a, b, c, e, g sao cho
\(\left|a\left(bn+c\right)-d\left(en+g\right)=1\right|\)
Tức là \(ab=de;\left|ac-dg\right|=1\)Thì
Chúng ta sẽ có \(\frac{bn+c}{en+g}\)và\(\frac{en+g}{bn+c}\)là các phân số tối giản
đúng rồi....mk cx giải như tek...c.ơn bn
chứng,minh các phân số sau đây là phần số,tối giản
A=12n+1/30n+2
B=14n+17/21n+25
b) Gọi ƯCLN( 14n+17;21n+25)=d (d thuộc N*)
Ta có : 14n+17 chia hết cho d và 21n+25 chia hết cho d
Suy ra 3(14n+17) chia hết cho d và 2(21n+25 ) chia hết cho d
Suy ra 42n+51 chia hết cho d và 42n +50 chia hết cho d
Suy ra (42n+51)- 42n- 50 chia hết cho d
d=1
14n+17 và 21n+25 là 2 số nguyên tố cùng nhau
Vậy \(\frac{14n+17}{21n+25}\)là phân số tối giản
K mình nha
a)Gọi ƯCLN(12n+1;30n+2)=d (d thuộc N*)
Ta có :12n+1chia hết cho d; 30n+2 chia hết cho d
Suy ra 5(12n+1) chia hết cho n
2(30n+2) chia hết cho n
Suy ra 60n+5 chia hết cho n và 60n+4 chia hết cho n
Suy ra (60n+5)-(60n+4) chia hết cho d
1 chia hết cho d
d=1
12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
Vậy \(\frac{12n+1}{30n+2}\)là phhân số tối giản (đpcm)