Giải:
a) \(A=\dfrac{12n+1}{30n+2}\)
Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}5.\left(12n+1\right)⋮d\\2.\left(30n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(A=\dfrac{12n+1}{30n+2}\) là p/s tối giản
b) \(B=\dfrac{14n+17}{21n+25}\)
Gọi \(ƯCLN\left(14n+17;21n+25\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}14n+17⋮d\\21n+25⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3.\left(14n+17\right)⋮d\\2.\left(21n+25\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}42n+51⋮d\\42n+50⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+51\right)-\left(42n+50\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(B=\dfrac{14n+17}{21n+25}\) là p/s tối giản
Chúc bạn học tốt!