a. A= \(\frac{12n+1}{30n+2}\)
Gọi d là ước chung của 12n +1 và 30n +2
\(\Rightarrow\)12n + 1 \(⋮\)d => 5 (12n + 1) \(⋮\)d => 60n + 5 \(⋮\)d
\(\Rightarrow\)30n+2 \(⋮\)d = > 2 ( 30n + 2) \(⋮\)d => 60n + 4\(⋮\)d
\(\Rightarrow\)(60n + 5) - 60n + 4 \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d
\(\Rightarrow\)d= 1
\(\Rightarrow\)ƯCLN( 12n+ 1; 30n+2)
Vậy 12n+1/ 30n+2 là phân số tối giản
b. B= \(\frac{14n+17}{21n+25}\)
gọi d là ước chung của 14n+ 17 và 21n + 25
=> 14n+ 7 \(⋮\)d => 3(14n+17) \(⋮\)d => 42n + 51 \(⋮\)d
=> 21n+ 25 \(⋮\)d =.> 2(21n + 5) \(⋮\)d =.> 42n + 50 \(⋮\)d
=.> 42n + 51 - (42n + 50) \(⋮\)d
=> 1 \(⋮\)d
=> d= 1
vậy 14n + 17/ 21n + 25 là phân số tối giản
có chỗ ( 60n +5) - 60n + 4 là sai ấy nhé!
đúng là 60n + 5 - ( 60n + 4 ) mới đúng
nhớ k cho mik nha
a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản