\(\frac{2012\cdot2011+2012\cdot11+2000}{2013\cdot2011-2011\cdot2012}\)
Tính nhanh:
\(A=\frac{2013\cdot2012-1997}{2012\cdot2011+2015}\)
Chi oi ,sao trung hop the!To cung ko giai dc
\(A=\frac{1\cdot2}{2\cdot2}\cdot\frac{2\cdot3}{3\cdot3}\cdot\frac{3\cdot4}{4\cdot4}\cdot\frac{4\cdot5}{5\cdot5}\cdot.................\cdot\frac{2012\cdot2013}{2013\cdot2013}\)với
\(B=\frac{2012\cdot2013-2012\cdot2012}{2012\cdot2011+2012\cdot2}\)
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
\(A=\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}.\frac{4.5}{5.5}.....\frac{2012.2013}{2013.2013}=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{2012}{2013}=\frac{1.2.3.4.5....2012}{2.3.4.5....2013}=\frac{1}{2013}\)
\(B=\frac{2012.2013-2012.2012}{2012.2011+2012.2}=\frac{2012.\left(2013-2012\right)}{2012.\left(2011+2\right)}=\frac{2012}{2012.2013}=\frac{1}{2013}\)
\(\Rightarrow A=B\)
Tính bằng cách hợp lí :
a, \(\frac{2012\cdot2011-1}{2010\cdot2012+2011}\)
b, \(10,11+11,12+12,13+...+97,98+98,99+99,100\)
a, \(A=\frac{2012\cdot2011-1}{2010\cdot2012+2011}=\frac{2012\cdot\left(2010+1\right)-1}{2010\cdot2012+\left(2012-1\right)}=\frac{2012\cdot2010+2012-1}{2012\cdot2010+2012-1}=1\)
b, 10,11 + 11,12 + 12,13 + .... + 97,98 + 98,99 + 99,100
= ( 10 + 11 + 12 + .... + 97 + 98 + 99 ) + ( 0,10 + 0,11 + 0,12 + 0,13 + ... + 0,98 + 0,99 )
= { ( 10 + 99 ) . [ ( 99 - 10 ) : 1 + 1 ] ] : 2 } + { ( 0,10 + 0,99 ) . [ ( 0,99 - 0,10 ) : 0,01 + 1 ] : 2 }
= ( 99 . 90 : 2 ) + ( 1,09 . 90 : 2 )
= 4455 + 49,05
= 4504,05
So sánh:
\(S=\dfrac{1}{\sqrt{1\cdot2012}}+\dfrac{1}{\sqrt{2\cdot2011}}+...+\dfrac{1}{k\sqrt{2012-k+1}}+...+\dfrac{1}{\sqrt{2012\cdot1}}\text{ }và\text{ }\dfrac{4024}{2013}\)
\(S=\dfrac{1}{\sqrt{1.2012}}+\dfrac{1}{\sqrt{2.2011}}+...+\dfrac{1}{\sqrt{2012.1}}>\dfrac{1}{\dfrac{1+2012}{2}}+\dfrac{1}{\dfrac{2+2011}{2}}+...+\dfrac{1}{\dfrac{2012+1}{2}}=\dfrac{2012}{\dfrac{2013}{2}}=\dfrac{4024}{2013}\)
a)So sánh M và N bằng cách thuận tiện nhất
M=\(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\) và N= \(\frac{2010+2011}{2011+2012}\)
b) So sánh P=\(\frac{2011\cdot2012-2}{2010\cdot2011+4020}\)
a) Ta có : \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
Nên \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)=> M > N
b) P = \(\frac{2011.2012-2}{2010.2011+4020}=\frac{2011.\left(2010+2\right)-2}{2010.2011+4020}=\frac{2011.2010+2011.2-2}{2010.2011+4020}=\)\(\frac{2011.2010+4020}{2010.2011+4020}=1\)
Nên P = 1
câu b sửa lại:\(P=\frac{2011.2012-2}{2010.2011+4020}=\frac{2011.2010+4022-2}{2010.2011+4020}=\frac{2010.2011+4020}{2010.2011+4020}=1\)
so sánh P=\(\frac{2011\cdot2012-2}{2010\cdot2011+4020}\)với 1
Ta có: \(\frac{2011\times2012-2}{2010\times2011+4020}=\frac{2011\times\left(2010+2\right)-2}{2010\times2011+4020}=\frac{2011\times2010+4022-2}{2010\times2011+4020}=\frac{2011\times2010+4020}{2010\times2011+4020}=1\)
Vậy \(\frac{2011\times2012-2}{2010\times2011+4020}=1\)
\(P=\frac{2011.2012-2}{2010.2011+4020}=\frac{2010.2011+2.2011-2}{2010.2011+4020}=\frac{2010.2011+4042-2}{2010.2011+4020}=\frac{2010.2011+4040}{2010.2011+4040}=1\)
Vậy P = 1
\(\frac{2008+2009\cdot2010}{2010\cdot2011-2012}\)
\(=\frac{2008+2009.2010}{2010.\left(2009+2\right)-2012}\)
\(=\frac{2009.2010+2008}{2010.2009+2010.2-2012}\)
\(=\frac{2008+2009.2010}{2008+2009.2010}=1\)
tính nhanh
\(\frac{2013\cdot2012-1}{2011\cdot2013+2012}\)
\(MS=2011.2013+2012\)
\(=\left(2012-1\right).2013+2012\)
\(=2012.2013-2013+2012\)
\(=2013.2012-1\)
\(=TS\)
Vậy phân số đã cho bằng 1.
Trả lời:
\(\frac{2013.2012-1}{2011.2013+2012}=\frac{2013.\left(2011+1\right)-1}{2011.2013+2012}\)
\(=\frac{2011.2013+2013-1}{2011.2013+2012}\)
\(=\frac{2011.2013+2012}{2011.2013+2012}\)
\(=1\)
Học tốt
\(\frac{2013.2012-1}{2011.2013+2012}\)
\(=\frac{2013.2012-1}{2011.2013+2013-1}\)
\(=\frac{2013.2012-1}{2012.2013-1}\)
\(=1\)
Tính nhanh :
\(\frac{2010\cdot2011+1000}{2012\cdot2010-1010}\)
\(\frac{2010\cdot2011+1000}{2012\cdot2010-1010}\)
= \(\frac{2010\cdot2011+1000}{\left(2011+1\right)\cdot2010-1010}\)
= \(\frac{2010\cdot2011+1000}{2011\cdot2010+2010-1010}\)
= \(\frac{2010\cdot2011+1000}{2011\cdot2010+1000}\)
= 1
\(\frac{2010.2011+1000}{2012.2010-1010}\)
\(=\frac{2010.2011+2010-1010}{2012.2010-1010}\)
\(=\frac{2010.\left(2011+1\right)-1010}{2012.2010-1010}\)
\(=\frac{2010.2012-1010}{2012.2010-1010}\)
\(=1\)
\(\frac{2010\cdot2011+1000}{2012\cdot2010-1010}\)= \(\frac{2010\cdot2011+1000}{2011\cdot2010+2010-1010}\)= \(\frac{2010\cdot2011+1000}{2011\cdot2010+1000}\)= 1