\(\frac{2012.2011+2012.11+2000}{2013.2011-2011.2012}=\frac{2012.\left(2011+11\right)+2000}{2011.\left(2013-2012\right)}\)
\(=\frac{2012.2022+2000}{2011}\)
\(=\frac{4068264+2000}{2011}\)
\(=\frac{4070264}{2011}\)
\(=2024\)
~~ HỌC TỐT ~~ !! >-<
\(\frac{2012.2011+2012.11+2000}{2013.2011-2011.2012}=\frac{2012.\left(2011+11\right)+2000}{2011.\left(2013-2012\right)}\)
\(=\frac{2012.2022+2000}{2011}\)
\(=\frac{4068264+2000}{2011}\)
\(=\frac{4070264}{2011}\)
\(=2024\)
~~ HỌC TỐT ~~ !! >-<
Tính nhanh:
\(A=\frac{2013\cdot2012-1997}{2012\cdot2011+2015}\)
\(A=\frac{1\cdot2}{2\cdot2}\cdot\frac{2\cdot3}{3\cdot3}\cdot\frac{3\cdot4}{4\cdot4}\cdot\frac{4\cdot5}{5\cdot5}\cdot.................\cdot\frac{2012\cdot2013}{2013\cdot2013}\)với
\(B=\frac{2012\cdot2013-2012\cdot2012}{2012\cdot2011+2012\cdot2}\)
\(\frac{2008+2009\cdot2010}{2010\cdot2011-2012}\)
tính nhanh
\(\frac{2013\cdot2012-1}{2011\cdot2013+2012}\)
Tính nhanh :
\(\frac{2010\cdot2011+1000}{2012\cdot2010-1010}\)
\(A=\frac{2013\cdot2012-1}{2011\cdot2013+2012}\)=?
k=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2013\right)}{2013\cdot1+2012\cdot2+2011\cdot3+...+2\cdot2012+1\cdot2013}\)
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
2012*2011+2012*11+2000
2013*2011-2011*2012