Mọi người giúp em một bài toán chia hết lớp 9 ạ!
Chứng minh rằng với mọi số nguyên m, tồn tại số nguyên n sao cho n³-11n²-87n+m chia hết cho 191
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
chứng minh rằng với mọi số nguyên n
a) n2+11n+39 không chia hết cho 49
b) n2+n+1 không chia hết cho 9
a) Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
chứng minh rằng với mọi số nguyên n thì B= n^3+11n chia hết cho 6
N^3+11n=n^3-n+12n
=n(n^2-1)+12n
=(n-1)n (n+1) +12n
Vì n là số tự nhiên nên => (n-1)n (n+1) là tích 3 số nguyên liên tiếp => chia hết cho 6
12 chia hết cho 6 nên 12n chia hết cho 6
=> (n-1)n (n+1)+12n chia hết cho 6
=> n^+11n chia hết cho 6
Chứng minh rằng n2 + 11n + 2 không chia hết cho 12769 với mọi số nguyên n
Các anh chị gì ơi giúp em với !!!!!!
Ta thấy : 12769 = 113 x 113
Giả sử A = n2 + 11n + 2 chia hết cho 12769
=> 4A = 4 (n2+ 11n + 2 ) chia hết cho 12769
4A = 4n2 + 44n + 8 chia hết cho 12769
4A = [ (2n)2+ 2 x 2n x 11 + 121 ] - 113 chia hết cho 12769
=> 4A = (2n+11)2 - 113 chia hết cho 12769 (1).
Vậy thì 4A = (2n+11)2 - 113 chia hết cho 113.
=> (2n+1)2 chia hết cho 113 ( vì 113 chia hết cho 113 )
=> 2n + 1 chia hết cho 113 ( vì 113 là số nguyên tố )
=> (2n+1)2 chia hết cho 1132 = 12769 (2)
Từ (1) và (2) => 113 chia hết cho 12769 ( Vô lí )
Vậy n2 + 11n + 2 không chia hết cho 12769 với mọi số nguyên n.
Chứng minh rằng với mọi số nguyên dương \(n\) thì số \(A=59^n-17^n-9^n+2^n\) chia hết cho 35.
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán với ạ!
Em cám ơn nhiều lắm ạ!
Ta có: \(59\equiv3\left(mod7\right)\Rightarrow59^n\equiv3^n\left(mod7\right)\)
Tương tự: \(17^n\equiv3^n\left(mod7\right)\) ; \(9^n\equiv2^n\left(mod7\right)\)
\(\Rightarrow A\equiv3^n-3^n-2^n+2^n\left(mod7\right)\)
\(\Rightarrow A⋮7\)
Vẫn tương tự, ta có: \(A\equiv4^n-2^n-4^n+2^n\left(mod5\right)\)
\(\Rightarrow A⋮5\)
Mà 7 và 5 nguyên tố cùng nhau
\(\Rightarrow A⋮35\)
1:Chứng minh rằng n^2+11n +2 không chia hết cho 12769 với mọi số nguyên n.
đúng theo yeu cau tôi giải cho bạn
gia su A=n^2+11n+2 chia het cho 12769
=> n^2+11n+2=113^2.k
<=>n^2+11n+2-113^2.k=0
=>delta(n,k)=113+4.113^2.k=113.(1+4.113k)=t^2
=>1+4.113k=113p^2=>p^2=4k+1/113=>p khong nguyen=> gs ban dau sai=> dpcm
Chứng minh rằng n2 + 11n + 2 không chia hết cho 12769 với mọi số nguyên n
Chứng minh rằng n2 + 11n + 2 không chia hết cho 12769 với mọi số nguyên n.
CM bằng cách thế số vào n
Thay n=169,ta đc
1692+11.169+2=30422
Ta thấy : 30422 ko chia hết cho 12769
\(\Rightarrow\)\(n^2+11n+2\)ko chia hết cho 12769 với mọi n
Chứng minh
a, Tích hai số nguyên liên tiếp luôn chia hết cho 2
b,Tích ba số nguyên liên tiếp chia hết cho 6
c,Tổng lập phương của ba số nguyên liên tiếp luôn chia hết cho 9
d,n^3+11n chia hết cho 6 với mọi n là số nguyên
e,n^5-5n^3+4n chia hết cho 120 với mọi n là số tự nhiên
trình bày cho mình luôn nha!!!!!!