tìm GTNN cua A=\(x^2-2xy+6y^2-12x+12y+45\)
Tìm GTNN \(A=x^2-2xy+6y^2-12x+2y+45\)
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(A=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
GTNN của A = 4 khi và chỉ khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}\)
tìm gtnn của A = x2-2xy+6y2 -12x+2y+45
A = x2 - 2xy + 6y2 - 12x + 2y + 45
= (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4
= [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4
= (x - y - 6)2 + 5(y - 1)2 + 4
Vì (x - y - 6)2 >= 0 với mọi x, y
5(y2 - 1) >= 0 với mọi y
=> Amin = 4 <=> y = 1, x = 7
Tìm GTNN
\(A=x^2-2xy+6y^2-12x+3y+45\)
Help me!
\(A=x^2-2xy+6y^2-12x+3y+45\)
\(A=x^2-2x\left(y+6\right)+6y^2+3y+45\)
\(A=x^2-2x\left(y+6\right)+y^2+2.y.6+36+5y^2-9y+9\)
\(A=x^2-2x\left(y+6\right)+\left(y+6\right)^2+5\left(y^2-2.y.\frac{9}{10}+\frac{81}{100}\right)-\frac{81}{20}+9\)
\(A=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2-\frac{99}{20}\)
Ta thấy: \(\left(x-y-6\right)^2\ge0;5\left(y-\frac{9}{10}\right)^2\ge0\forall x;y\)
\(\Rightarrow A\ge-\frac{99}{20}.\)Vậy \(Min_A=-\frac{99}{20}.\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\y-\frac{9}{10}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=6\\y=\frac{9}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{69}{10}\\y=\frac{9}{10}\end{cases}}.\)
Xin lỗi, \(Min_A=\frac{99}{20}\)nha bạn, vì \(-\frac{81}{20}+9=-\left(\frac{81}{20}-9\right)=-\left(-\frac{99}{20}\right)=\frac{99}{20}.\)
Tìm GTNN của A=\(x^2-2xy+6y^2-12x+2y+45\)
A = x2 - 2xy + 6y2 - 12x + 2y + 45
= (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4
= [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4
= (x - y - 6)2 + 5(y - 1)2 + 4
Vì (x - y - 6)2 >= 0 với mọi x, y
5(y2 - 1) >= 0 với mọi y
=> Amin = 4 <=> y = 1, x = 7
Tìm GTNN chủa biểu thức:
a,A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
phân tích đa thức có dạng m2 + n ( n thuộc z)
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
Tìm GTNN của biểu thức:
A= x2 - 2xy + 6y2 - 12x + 2y + 45
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(A=\left(x^2-2xy+y^2-12x+12y+36\right)+\left(5y^2-10y+5\right)+4\)
\(A=\left[\left(x-y\right)^2-12.\left(x-y\right)+6^2\right]+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5.\left(y-1\right)^2+4\)
Vì \(\left(x-y-6\right)^2\ge0\forall x,y\)
\(5.\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow A_{Min}=4\Leftrightarrow y=1,x=7\)
tìm GTNN của biểu thức x\(^2\) - 2xy + 6y\(^2\) - 12x + 2y + 45
tìm GTNN của biểu thức
P= \(x^2-2xy+6y^2-12x+3y+45\)
\(P=x^2-2xy+6y^2-12x+3y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+3y+45\)
\(=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+\left(5y^2-9y+9\right)\)
\(=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2+\frac{99}{20}\)
\(\ge\frac{99}{20}\) . Đẳng thức xảy ra khi y = 9/10, x = 69/10
Vậy min P = 99/20 tại x = 69/10, y = 9/10