nếu m;n là sô twj nhiên thỏa mãn : \(4m^2+m=5n^2+n\) thì
m-n và 5m+5n+1 đều là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Trong các khẳng định sau, khẳng định nào sai?
A. Nếu a\(⋮\)m và b\(⋮\)m thì (a+b)\(⋮\)m.
B. Nếu a\(⋮\)m thì a.b\(⋮\)m với mọi số tự nhiên b.
C. Nếu a\(⋮̸\)m và b\(⋮̸\)m thì (a+b)\(⋮̸\)m.
D. Nếu a\(⋮\)m và b\(⋮\)m thì (a-b)\(⋮\)m.
Cho số m dương . Chứng minh :
a) Nếu m > 1 thì \(\sqrt{m}>1\)
b) Nếu m < 1 thì \(\sqrt{m}< 1\)
c) nếu m > 1 thì \(m>\sqrt{m}\)
d) nếu m < 1 thì \(m< \sqrt{m}\)
\(a,\)\(m>1\)\(\Rightarrow m-1>0\)
\(\Rightarrow\left(\sqrt{m}-\sqrt{1}\right)\left(\sqrt{m}+1\right)>0\)
\(\Rightarrow\left(\sqrt{m}-1\right)\left(\sqrt{m}+1\right)>0\)
Vì \(\sqrt{m}+1>0\)mà \(\left(\sqrt{m}-1\right)\left(\sqrt{m}+1\right)>0\)
\(\Rightarrow\sqrt{m}-1>0\)\(\Rightarrow\sqrt{m}>1\)
\(b,\)\(m< 1\Rightarrow m-1< 0\)
\(\Rightarrow\left(\sqrt{m}-\sqrt{1}\right)\left(\sqrt{m}+1\right)< 0\)
\(\Rightarrow\left(\sqrt{m}-1\right)\left(\sqrt{m}+1\right)< 0\)
Vì \(\sqrt{m}+1>0\)Mà \(\left(\sqrt{m}-1\right)\left(\sqrt{m}+1\right)< 0\)
\(\Rightarrow\sqrt{m}-1< 0\Leftrightarrow\sqrt{m}< 1\)
c)vì m dương ,m>1 => m-1>0 <=> m(m-1) >0
<=>\(m^2-m>0\)
<=>\(\left(m-\sqrt{m}\right)\left(m+\sqrt{m}\right)>0\)0
Mà m dương nên \(m+\sqrt{m}>0\)=> \(m-\sqrt{m}>0=>m>\sqrt{m}\)(đpcm)
Câu d tương tự nhé
1. Cho số m dương. Chứng minh :
a) Nếu m>1 thì\(\sqrt{m}\)>1
b) Nếu m<1 thì \(\sqrt{m}\)<1
2. Cho số m dương. Chứng minh:
a) Nếu m>1 thì m>\(\sqrt{m}\)
b) Nếu m<1 thì m<\(\sqrt{m}\)
Viết vào chỗ chấm ( theo mẫu ) :
Mẫu : Nếu a = 2 và b = 1 thì a + b = 2 +1 = 3
a) Nếu a = 2 và b = 1 thì a – b = …………………..
b) Nếu m = 6 và n = 3 thì: m + n = ………………….
m – n = ………………….
m × n = ………………….
m : n = ………………….
a) Nếu a = 2 và b = 1 thì a – b = 2 – 1 = 1.
b) Nếu m = 6 và n = 3 thì: m + n = 6 + 3 = 9.
m – n = 6 -3 = 3.
m × n = 6× 3 = 18.
m : n = 6 : 3 = 2.
Cho a,b,c>0 thỏa mãn \(a^2=b^2+c^2\). CMR
a) \(a^m>b^m+c^m\) nếu m>2
b) \(a^m< b^m+c^m\) nếu m<2
Sử dụng tính đơn điệu của hàm mũ: hàm \(y=a^x\) nghịch biến khi \(0< a< 1\) và đồng biến khi \(a>1\)
\(a^2=b^2+c^2\Rightarrow\left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
\(\Rightarrow\left\{{}\begin{matrix}0< \dfrac{b}{a}< 1\\0< \dfrac{c}{a}< 1\end{matrix}\right.\) nên các hàm \(\left(\dfrac{b}{a}\right)^x\) và \(\left(\dfrac{c}{a}\right)^x\) đều nghịch biến
Xét: \(\dfrac{b^m+c^m}{a^m}=\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m\) \(\)
- Khi \(m>2\Rightarrow\left(\dfrac{b}{a}\right)^m< \left(\dfrac{b}{a}\right)^2\) và \(\left(\dfrac{c}{a}\right)^m< \left(\dfrac{c}{a}\right)^2\)
\(\Rightarrow\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m< \left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
Hay \(\dfrac{b^m+c^m}{a^m}< 1\) \(\Rightarrow a^m>b^m+c^m\)
Câu b c/m tương tự, \(m< 2\) thì \(\left(\dfrac{b}{a}\right)^m>\left(\dfrac{b}{a}\right)^2...\)
1. Cho số m dương. Chứng minh :
a) Nếu m>1 thì\(\sqrt{m}\)>1
b) Nếu m<1 thì \(\sqrt{m}\)<1
2. Cho số m dương. Chứng minh:
a) Nếu m>1 thì m>\(\sqrt{m}\)
b) Nếu m<1 thì m<\(\sqrt{m}\)
giúp mình với m.n, mình đang cần gấp, cảm ơn m.n
bài 1:
a) \(m>1\)
=>\(\sqrt{m}>\sqrt{1}\)
=>\(\sqrt{m}>1\)
b) \(m< 1\)
=>\(\sqrt{m}< \sqrt{1}\)
=>\(\sqrt{m}< 1\)
1. Cho số m dương. Chứng minh :
a) Nếu m>1 thì\(\sqrt{m}\)>1
b) Nếu m<1 thì \(\sqrt{m}\)<1
2. Cho số m dương. Chứng minh:
a) Nếu m>1 thì m>\(\sqrt{m}\)
b) Nếu m<1 thì m<\(\sqrt{m}\)
Giúp mình với m.n ơi, cảm ơn m.n
Nếu 1,1 x mn = n5.8 thì m = ?
Nếu mn x 1,1 = m9,n thì m + n = ?
Nếu mn x 2,02 = 9m,n2 thì m + n = ?
Nếu 1,01 x ab = a5,7b thì a = ?
CÁC BẠN GIÚP MÌNH GIẢI NHÉ ! MÌNH KẸT CỨNG RỒI !
1.cho 2hai số a,b không âm . chứng minh :
a) nếu a < b thì \(\sqrt{a}< \sqrt{b}\)
b) nếu \(\sqrt{a}< \sqrt{b}\)thì a < b
2. cho số m dương . chứng minh :
a) nếu m > 1 thì m > \(\sqrt{m}\)
b) nếu m < 1 thì m < \(\sqrt{m}\)
3. cho số m dương . chúng minh
a) nếu m > 1 thì \(\sqrt{m}>1\)
b) nếu m < 1 thì \(\sqrt{m}< 1\)
MỘT LIKE CHO AI LÀM ĐC
Nếu m \(\ne\) 0 thì m có số liền trước là ............ , số liền sau là ............
Nếu m \(=\) 0 thì m có số liền trước là ............ , số liền sau là ............
Nếu m ≠0 thì m có số liền trước là -1 , số liền sau là 1
Nếu m = 0 thì m có số liền trước là -1 , số liền sau là 1