Cho bốn số dương x; y; z; t chứng minh rằng :
\(\frac{9}{10}< \frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}< \frac{9}{4}\)
Dựa vào bảng số liệu trang 35, cho biết:
- Nếu diện tích bề mặt Trái Đất là 510 triệu km2 thì bề mặt các đại dương chiếm bao nhiêu phần trăm?
- Tên của bốn đại dương trên thế giới.
- Đại dương nào có diện tích lớn nhất trong bốn đại dương?
- Đại dương nào có diện tích nhỏ nhất trong bốn đại dương?
-% của bề mặt các đại dương:
+ Tổng diện tích các đại dương: 179,6 + 93,4 +74,9 +13,1 = 361 triệu km2.
+ % bề mặt các đại dương = (361/ 510) x 100% = 70,8%
-Tên của bốn đại dương trên thế giới:
+ Thái Bình Dương
+ Đại Tây Dương
+ Ấn Độ Dương
+ Bắc Băng Dương
-Đại dương có diện tích lớn nhất: Thái Bình Dương.
-Đại dương có diện tích nhỏ nhất: Bắc Băng Dương.
Cho bốn số dương a, b, c, d. Đặt:
x=2a+b-\(2\sqrt{cd}\); y=2b+c-\(2\sqrt{da}\); z=2c+d-\(2\sqrt{ab}\);t=2d+a-\(2\sqrt{bc}\)
CMR: trong bốn số x, y, z, t có ít nhất 2 số dương.
nhấn vào đây nha: [Đại số] Một bài toán chứng minh sự tồn tại. | HOCMAI Forum - Cộng đồng học sinh Việt Nam
hì hì ok nha!! 7655685795325325454364561253454364565464575678568788978676
Cho bốn số thực dương x, y, z, t thỏa mãn x+y+z+t= 2. Tìm giá trị nhỏ nhất của biểu thức A = ( x + y + z ) ( x + y ) x y z t
Ta có:
4 A = ( x + y + z + t ) 2 ( x + y + z ) ( x + y ) x y z t ≥ 4 ( x + y + z ) t ( x + y + z ) ( x + y ) x y z t = 4 ( x + y + z ) 2 ( x + y ) x y z ≥ 4.4 ( x + y ) z ( x + y ) x y z = 16 ( x + y ) 2 x y ≥ 16.4 x y x y ≥ 64 ⇒ A ≥ 16
Đẳng thức xảy ra khi và chỉ khi x + y + z + t = 2 x + y + z = t x + y = z x = y ⇔ x = y = 1 4 z = 1 2 t = 1
Cho bốn số dương x, y, z, t có tổng bằng 2. Tìm giá trị nhỏ nhất của biểu thức A = (x+y+z)(x+y) / xyzt
Tích bốn số Cho bốn số thực a,b,c,d. Hỏi tích của bốn số đó là số dương, số âm hay số 0. Dữ liệu vào: gồm bốn dòng, mỗi dòng gồm một số thực lân lượt là bốn số a,b,c,d (-10^18
Program HOC24;
var a,b,c,d: integer;
Begin
write('Nhap a: '); readln(a);
write('Nhap b: '); readln(b);
write('Nhap c: '); readln(c);
write('Nhap d: '); readln(d);
if (a=0) or (b=0) or (c=0) or (d=0) then write('Tich 4 so bang 0');
if a*b*c*d>0 then write('Tich 4 so do la so duong');
if a*b*c*d<0 then write('Tich 4 so do la so am');
readln
end.
Cho bốn số nguyên có tính chất : Tích của ba số tùy ý trong bốn số đó luôn là số nguyên âm. Hãy giải thích tại sao tích của bốn số đó là một số ngyên dương
Giả sử ngược lại rằng
tích của 4 số đó là số âm a.b.c.d <0
mà tích 3 số bất kỳ đều âm là abc<0 , bcd<0 acd<0 và abd <0
nên ta có \(\hept{\begin{cases}abcd< 0\\abc< 0\end{cases}\Rightarrow d>0}\), tương tự ta đều chỉ ra được b>0, c>0 và d>0
khi đó abc>0 mâu thuẫn với giả thiết
vậy giả sử là sai hay tích 4 số đó phải là số nguyên dương
Câu 1: Cho 13 số nguyên, trong đó tổng của bốn số bất kì trong 13 số ấy là một số nguyên dương. Chứng tỏ tổng của 13 số ấy là một số nguyên dương.
Câu 2: Tìm các số nguyên tố x, y sao cho x2 + 45 = y2.
2,
-Ta có: \(x^2+45=y^2\)
\(\Leftrightarrow y^2>45\Rightarrow y\) là số ng tố lẻ
\(\Rightarrow x^2\)chẵn( vì: chẵn +5=lẻ)
\(\Rightarrow x=2\)
\(\Leftrightarrow2^2+45=y\)
\(\Leftrightarrow y=\pm\sqrt{49}=\pm7\)
-Mà: snt>0
-Vậy: \(x=2;y=7\)
Cho bốn số thực dương x,y,z,t thỏa mãn x+y+z+t=2 Tìm Min A=\(\frac{(x+y+z)(x+y)}{xyzt}\)
\(4A=\dfrac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\ge\dfrac{4\left(x+y+z\right).t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(=\dfrac{4\left(x+y+z\right)^2\left(x+y\right)t}{xyzt}\ge\dfrac{16\left(x+y\right)^2zt}{xyzt}\ge\dfrac{64xyzt}{xyzt}=64\)
\(\Rightarrow A\ge16\)
Dấu = xảy ra tại \(x=y=\dfrac{1}{4};z=\dfrac{1}{2};t=1\)
Ta có nhận xét rằng: Tích của ba số nguyên bất kỳ là một số dương thì trong đó phải tồn tại một số dương.
Do tích của 3 số nguyên bất kỳ trong 25 số đều là số dương nên ta lấy nhóm 3 số bất kỳ và lấy số dương trong đó ra.
Vậy còn lại 24 số.
Ta chia 24 số này thành 8 nhóm, mỗi nhóm có 3 số.
Vì tích của 3 số nguyên bất kì trong 24 số đó đều dương nên mỗi nhóm, ta đều lấy ra được số một dương.
Vậy thì ta được 8 số dương. Vậy còn lại 24 - 8 = 16 số
Ta lại lấy một nhóm 3 số bất kỳ, lấy số dương trong đó. Vậy còn lại 16 - 1 = 15 số.
Lại chia 15 số thành 5 nhóm, mỗi nhóm 3 số. Tiếp tục lấy đi 1 số dương trong mỗi nhóm, ta được 5 số.
Ta còn 15 - 5 = 10 số.
Ta lại lấy một nhóm 3 số bất kỳ, lấy số dương trong đó. Vậy còn lại 10 - 1 = 9 số.
Lại chia 9 số thành 3 nhóm 3 số. Tiếp tục lấy đi 3 số dương trong 3 nhóm.
Ta còn 9 - 3 = 6 số.
Ta chia 6 số thành 2 nhóm, tiếp tục lấy đi 2 số dương, ta còn 4 số.
Lấy nhóm 3 số bất kì, chọn được số dương trong đó.
Vậy còn 3 số.
Trong 3 số này lấy một số dương. Vậy chỉ còn 2 số.
Tích hai số này là số dương nên hoặc chúng cùng âm, cùng dương.
Nếu chúng cùng âm, ta lấy 2 số dương bất kì vừa chọn được trong 23 số kia nhân với một trong hai số đã cho thì
được tích âm.
Vậy vô lý.
Từ đó suy ra hai số còn lại cùng dương.
Nói cách khác cả 25 số đều là số dương
có ai mún làm ny mk ko? mk là con gái nha
trả lời cái j zậy
Cho bốn số nguyên dương khác nhau thỏa mãn tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì luôn chia hết cho 3. Tính giá trị nhỏ nhất của tổng bốn số này
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Gọi 4 số cần tìm là a, b, c, d (a, b, c, d thuộc n*)
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Nếu cảm thấy đúng thì k cho mình cái!