Ta có: \(A=\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)
\(A>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1>\frac{9}{10}\)
\(A< \frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}+\frac{t+z}{x+y+z+t}=2< \frac{9}{4}\)
Vậy: \(\frac{9}{10}< A< \frac{9}{4}\)
bạn girl làm đúng rồi , giống ý tưởng của mình là đánh giá dãy trên nhỏ hơn 1 và lớn hơn 2
Nhưng bạn nên đánh giá rõ từng phân số nhé , không nên làm tắt như bài của bạn ấy :)