1. Tam giác abc vuông tại B. D thuộc tia đối CB. So sánh DA và ÁC
1. Cho tam giác ABC cân tại A. Trên tia đối của tia CB lấy một điểm D. So sánh AD với AB
2. Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại D. So sánh AD và CD
cho tam giác ABC cân tại A.trên tia đối của tia CB lấy điểm D. a) so sánh AD và AB ; b)vẽ BE vuông góc AC và DF vuông góc AB.so sánh BE và DF
a: Xét ΔACD có \(\widehat{ACD}\) là góc tù
nên AD là cạnh lớn nhất
Suy ra: AD>AC
hay AD>AB
Cho tam giác ABC vuông tại A và góc ABC = 60 độ.
a) So sánh AB và AC.
b) Trên BC lấy D sao cho BD=AB. Qua D dựng đường thẳng vuông góc với BC cắt tia đối của tia AB tại E.
C/m tam giác ABC = tam giác DBE.
c) Gọi H là giao điểm của ED và ÁC. C/m tia BH là tia phân giác của góc ABC.
d) Qua B dựng đường thẳng vuông góc với AB cắt đường thẳng ED tại K.
C/m tam giác HBK đều.
mọi người vẽ giúp mình hình với
Cho tam giác ABC vuông tại A biết AB = 9 cm AC bằng 12 cm Kẻ BD là tia phân giác của góc B( d thuộc AC) kẻ dh vuông góc với BC( H thuộc BC). Trên tia đối của tia ab lấy điểm K sao cho a k = HC a) Chứng minh tam giác ABD= tam giác HBD b) So sánh DA và DC c) Chứng minh ba điểm k,d,hthẳng hàng
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng
Cho tam giác ABC cân tại A, điểm D thuộc tia đối của tia CB. So sánh các độ dài AD và AB.
Hạ đường cao AH của tam giác ABC. => H nằm giữa B và C (1)
D thuộc tia đối của CB => C nằm giữa B và D (2)
Từ (1) và (2) => C nằm giữa H và D => HC<HD (3)
Mà AH là đơngf vuông góc => AC và AD là đường xiên (4)
Từ (3) và (4) => AC<AD (Quan hệ đường xiên hình chiếu). Mà AC=AB => AB<AD.
Vậy AB<AD.
Cho tam giác ABC vuông tại A, tia phân giác CD(D in AB) . Trên tia CB lấy điểm E sao cho CE=CA, Chứng minh rằng:
a tam giác CAD = tam giác CED
b) DE vuông góc BC
c) AD=ED Và CD là đường trung trực của đoạn thẳng AE.
d) So sánh DA và DC.
a: Xét ΔCAD và ΔCED có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔCAD=ΔCED
b: Ta có:ΔCAD=ΔCED
=>\(\widehat{CAD}=\widehat{CED}\)
mà \(\widehat{CAD}=90^0\)
nên \(\widehat{CED}=90^0\)
=>DE\(\perp\)BC
c: ta có: ΔCAD=ΔCED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: CA=CE
=>C nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra CD là đường trung trực của AE
d: Ta có: ΔACD vuông tại A
=>CD là cạnh lớn nhất trong ΔACD
=>CD>DA
1. Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt BC tại D. Trên AC lấy K sao cho AK = AB. So sánh BD, DC. 2. Cho tam giác ABC cân tại A. Trên tia đối của tia CB lấy N. Chứng minh AN > AB
1: Xét ΔABC có AD là phân giác
nên BD/AB=DC/AC
mà AB<AC
nên BD<DC
2: ΔABC cân tại A
=>góc ACB<90 độ
=>góc ACN>90 độ
=>AC<AN
=>AB<AN
:
Cho tam giác ABC cân tại A . Trên tia đối của tia CB lấy điểm D
a/ So sánh AD và AB
b/ Vẽ BE vuông góc với AC tại E và DF vuông góc với AB tại F. So sánh BE và
DF
Câu 12: Cho tam giác ABC vuông tại C , có AB = 10 cm, AC cm = 6 . Trên tia đối của tia CB lấy D sao cho CD=CB .
a) Tính BC , so sánh góc A và góc B của tam giác ABC
b) Chứng minh tam giác ABD cân tại A.
c) Gọi M là trung điểm của AD , BM cắt AC tại G. Chứng minh GB +2GC>AB
d) Qua C kẻ CN DA / / sao cho N thuộc AB . Chứng minh D, G ,N thẳng hàng .
a: BC=8cm
BC>AC
=>góc A>góc B
b: XétΔABD có
AC vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
c: GB+2GC=GB+GA>AB