Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nonk_Kakashi
Xem chi tiết
nonk_Kakashi
Xem chi tiết
bvdfhgjk
2 tháng 3 2018 lúc 21:34

N ở đâu bạn 

bạn có thể tự vẽ hình ,nếu ko thì ib mk gửi 

a) xét tam giác vuông  ABD và tam giác  vuông EBD 

BD chung 

ABD = EBD (phân giác )

=> tam giác vuông BAD= tam giác vuông  BED (cạnh huyền - góc nhọn )

=> DA=DE 

b)

có tam giác BAD = tam giác BED ( câu a ) 

=> AB=BE        

xét tam giác ABH  và tam giác EBH 

AB=BE (cmt)

ABH = EBH (fân giác )

BH chung 

=> tam giác ABH =  tam giác EBH ( c-g-c) 

=> BHA =BHE  mà BHA +BHE = 180 => BHA = BHE = 90 => BH  vuông AE tại H 

c)  có tam giác ABC  vuông A  => \(AB^2+AC^2=BC^2\)

 \(3^2+4^2=BC^2\)

=> \(BC^2=25\Rightarrow BC=5\left(CM\right)\)

D) 'N' Ở ĐÂU BẠN 

nonk_Kakashi
Xem chi tiết
Duong
Xem chi tiết
Nguyễn thị thúy Quỳnh
16 tháng 12 2023 lúc 20:09

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 20:10

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng

Nguyễn thị thúy Quỳnh
16 tháng 12 2023 lúc 20:12

loading...

Đoàn Ngọc Quế Hoa
Xem chi tiết
mai nguyễn tuyết
17 tháng 4 2016 lúc 15:40

a) Xét tam giác ABC  vuông tại A có  AB=3 cm; BC= 5 cm

=> AB\(^2\)+BC\(^2\)=AC\(^2\)

= 3\(^2\)+5\(^2\) =AC\(^2\)

=9 + 25= AC\(^2\)

=> 34 = AC\(^2\)

=> \(\sqrt{34}\)= AC

Vậy AC = \(\sqrt{34}\) cm

Rin
17 tháng 4 2016 lúc 15:42

1) Áp dụng định lí Py-ta-go vào tam giác ABC:

BC2= AB2+ AC2

--> AC2= BC- AB2= 52 - 32= 25- 9 = 16

\(\Rightarrow\)AC = \(\sqrt{16}=4\) (cm)

2) Xét \(\Delta\)BAD và \(\Delta\)BHD :

BAD=BHD=90o 

BD chung

ABD=HBD

\(\Rightarrow\)  \(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền_góc nhọn)

\(\Rightarrow\)BA=BH (2 cạnh t/ứng)

\(\Rightarrow\)B cách đều 2 đầu mút của đoạn AH \(\Rightarrow\)  BH vuông góc với AH

3) ko biết

hihi
Xem chi tiết
An Thy
18 tháng 6 2021 lúc 10:47

Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)

\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK

Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)

\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)

Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp

\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)

\(\Rightarrow\)\(AI\parallel KD\)

Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)

BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)

\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành

mà \(IA=IK\Rightarrow IKDA\) là hình thoiundefined

Hồng Thiện Nhân
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 20:10

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

b: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE

Cường Hoàng
Xem chi tiết
Nguyễn Hoàng Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2023 lúc 13:39

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAE cân tại B

mà BM là phân giác

nên BM vuông góc AE tại M và M là trung điểm của AE