a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
b: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
=>BD là đường trung trực của AE
hay BD\(\perp\)AE
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
b: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
=>BD là đường trung trực của AE
hay BD\(\perp\)AE
Cho tam giác ABC vuông tại A (AB<AC), kẻ BD là phân giác của góc ABC (D thuộc AC). Vẽ DE vuông góc với BC tại E. a) Chứng minh tam giác ABD = tam giác EBD. b) AE cắt BD tại I. Chứng minh BD vuông góc với AE và I là trung điểm AE. c) Cẽ tia Cx vuông góc với tia BD tại H. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Chứng minh 3 điểm C,H,F thẳng hàng và AE // FC.
Cho tam giác ABC vuông tại A có BD tia phân giác của góc B ( D thuộc AC ) . Từ D kẻ DE vuông góc BC tại E. Xét tam giác ABd bằng tam giác EBD b) BD cắt AE tại M . Chứng minh BD vuông góc AE và M là trung điểm của AE. c) Gọi F là trung điểm của BE . Trên BA lấy K sao cho BK = BF . Cạnh AF cắt BM tại G . Chứng minh E,G,K thẳng hàng
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E
1/ Chứng minh tam giác ABD = tam giác EBD
2/ Chứng minh tam giác ABD cân và BD vuông góc với AE
3/ Kẻ AM vuông góc với BC tại M. Gọi H là giao điểm của AM và BD. Chứng minh HE song song với AC
4/ Tia phân giác ACB cắt AE tại I. Tính số đo góc AMI
cho tam giác abc vuông tại a. tia phân giác góc b cắt ac tại d kẻ DE vuông góc với BC tại E.
a) tam giác ABD=tam giác EBD.
b)BD là đường trung trực của AE
c)gọi F là giao điểm của đoạn thẳng ED và AB . Chứng minh : AE//CF và AD<CD
Cho tam giác abc vuông tại A có BD là phân giác, kẻ DE vuông góc với BC(E thuộc BC). Gọi F là giao điểm của AB và ĐE. Chứng minh rằng a) tam giác ABD = tam giác EBD b) BĐ là đường trung trực của AE c) BD vuông góc FC d) AE + FC < 2AC
cho tam giác ABC vuông tại A tia phân giác góc ABC cat AC tại D vẽ DE vuông góc với BC(E thuộc BC) AE cắt BD tại F đường thẳng vuông góc với BC tại B cắt CA tại M gọi I là giao điểm bất kỳ thuộc đường thẳng AB trên tia đối AB lấy J sao cho AJ=BI
a) chứng minh tam giác ABD = tam giác EBD và AD = DE
b) chứng minh AD<DC
c) chứng minh CF là trung tuyến của tam giác ACE
d) chứng minh RJ vuông góc JC
Cho tam giác ABC vuông tại A, vẽ BD là tia phân giác của ABC (D thuộc AC. Trên cạnh BC lấy điểm E sao cho BE=BA. Gọi I là giao điểm của BD và AE. a) Chứng minh: tam giác ABD= tam giác EBD. b) Chứng minh: DE=AD và DE vuông góc BC.
Cho tam giác ABC vuông tại A có AB = AC Gọi I là trung điểm của BC D là trung điểm của AC a chứng minh tam giác amb bằng tam giác ABC và AE vuông góc với BC b từ A kẻ đường thẳng vuông góc với BD cắt BC tại D trên tia đối của tia de lấy điểm F sao cho de = AB Chứng minh rằng tam giác ADM bằng C D E Từ đó suy ra AE = AB song song với CD e từ C kẻ đường thẳng vuông góc với AC cắt tại g Chứng minh tam giác ABD bằng tam giác ABC Chứng minh rằng AB = ACG
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DE vuông góc với BC tại E.
a) Chứng minh tam giác ABD bằng tam giác EBD .
b) Gọi F là giao điểm của AB và DE. Chứng minh BF = BC.
c) Kẻ đường cao AH của AFC . Chứng minh AE vuông góc với AH