Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu Minh Trí
Xem chi tiết
Trần Thanh Phương
29 tháng 12 2018 lúc 16:31

a) \(\left(x-3\right)^{x+5}-\left(x-3\right)^{x+15}=0\)

\(\left(x-3\right)^{x+5}-\left(x-3\right)^{x+5}\cdot\left(x-3\right)^{10}=0\)

\(\left(x-3\right)^{x+5}\cdot\left[1-\left(x-3\right)^{10}\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^{x+5}=0\\1-\left(x-3\right)^{10}=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^{10}=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\\left(x-3\right)^{10}=\left(\pm1\right)^{10}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=\left\{4;2\right\}\end{cases}}\)

Vậy........

nguyễn thị lan anh
Xem chi tiết
Sherry
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
Trần Nguyễn Bảo Quyên
15 tháng 1 2017 lúc 7:56

\(.a.\)

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}=0\)

\(\Leftrightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)

\(\Leftrightarrow\left[\begin{matrix}\left(x-7\right)^{x+1}=0\\\left[1-\left(x-7\right)^{10}\right]=0\end{matrix}\right.\)

+ Nếu \(\left(x-7\right)^{x+1}=0\)

\(\Rightarrow x-7=0\)

\(\Rightarrow x=0+7\)

\(\Rightarrow x=7\)

+ Nếu \(1-\left(x-7\right)^{10}=0\)

\(\Rightarrow\left(x-7\right)^{10}=1\)

\(\Rightarrow\left(x-7\right)^{10}=\left(\pm1\right)^{10}\)

\(\Rightarrow\left[\begin{matrix}x-7=1\\x-7=-1\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=1+7\\x=-1+7\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=8\\x=6\end{matrix}\right.\)

Vậy : \(x\in\left\{6;7;8\right\}\)

hà ngọc ánh
Xem chi tiết
ngọc linh
Xem chi tiết
Le Phuc Thuan
Xem chi tiết
alibaba nguyễn
2 tháng 3 2017 lúc 17:49

(x - 7)x+1 - (x - 7)x+1 = 0

<=> 0 = 0

Vậy phương trình có nghiệm với mọi x thuộc R

b/ Chi cần áp dụng tính chất dãy tỷ số bằng nhau thì ra thôi

Katori Nomudo
Xem chi tiết
Huỳnh Quang Sang
15 tháng 9 2019 lúc 10:58

Bài 1 : Sửa đề :

Tìm x,y,z 

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :

\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)

Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0

Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :

\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)

Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)

Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)

=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)

=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)

=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm

Tìm nốt bài cuối nhé 

thu dinh
Xem chi tiết
Vũ Minh Tuấn
26 tháng 7 2019 lúc 17:20

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!