Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Homin
Xem chi tiết
Homin
13 tháng 12 2022 lúc 21:50

Cứu với ;-;

Phạm Quỳnh Anh
Xem chi tiết
Trần Trà My
Xem chi tiết
phantrongquy
Xem chi tiết
Nguyễn Minh Đăng
24 tháng 10 2020 lúc 14:17

Ta thấy: \(\hept{\begin{cases}\left(x-3\right)^{2020}\ge0\\\left(y-z\right)^{2022}\ge0\\\left|x-y-z\right|\ge0\end{cases}\left(\forall x,y,z\right)}\)

\(\Rightarrow\left(x-3\right)^{2020}+\left(y-z\right)^{2022}+\left|x-y-z\right|\ge0\left(\forall x,y,z\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-3\right)^{2020}=0\\\left(y-z\right)^{2022}=0\\\left|x-y-z\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=z\\y+z=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=z=\frac{3}{2}\end{cases}}\)

Vậy x = 3 và y = z = 3/2

Khách vãng lai đã xóa
Xyz OLM
24 tháng 10 2020 lúc 14:18

Ta có : \(\hept{\begin{cases}\left(x-3\right)^{2020}\ge0\forall x\\\left(y-z\right)^{2022}\ge0\forall y;z\\\left|x-y-z\right|\ge0\forall x;y;z\end{cases}\Rightarrow}\left(x-3\right)^{2020}+\left(y-z\right)^{2022}+\left|x-y-z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-3=0\\y-z=0\\x-y-z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=z\\x=y+z\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=1,5\\z=1,5\end{cases}}\)

Vậy x = 3 ; y = 1,5 ; z = 1,5 là giá trị cần tìm

Khách vãng lai đã xóa
lê bá trường nghĩa
Xem chi tiết
Nguyễn Huy Tú
4 tháng 2 2021 lúc 21:30

\(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2022}+\left|x+y-z\right|=0\)

Ta có : \(\left(2x-1\right)^{2020}\ge0\forall x;\left(y-\frac{2}{5}\right)^{2022}\ge0\forall x;\left|x+y-z\right|\ge0\forall x;y;z\)

Dấu bằng xảy ra <=> \(x=\frac{1}{2};y=\frac{2}{5};z=x+y=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)

Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)

Khách vãng lai đã xóa
pilots am
Xem chi tiết
Longg
18 tháng 2 2020 lúc 21:22

( x - 1 )2018 + ( y + 3 )2020 + ( z - 5 )2022 = 0

Ta thấy : ( x - 1 )2018 \(\ge0\) ; ( y + 3 )2020 \(\ge0\) ; ( z - 5 )2022 \(\ge0\)

\(\Rightarrow\left(x-1\right)^{2018}+\left(y+3\right)^{2020}+\left(z-5\right)^{2022}\ge0\)

Theo đề,ta có : \(\left(x-1\right)^{2018}=\left(y+3\right)^{2020}=\left(z-5\right)^{2022}=0\)

+) \(\left(x-1\right)^{2018}=0\Rightarrow x-1=0\Rightarrow x=1\)

+) \(\left(y+3\right)^{2020}=0\Rightarrow y+3=0\Rightarrow y=-3\)

=) \(\left(z-5\right)^{2022}=0\Rightarrow z-5=0\Rightarrow z=5\)

Vậy : x = 1 ; y = -3 ; z = 5

Khách vãng lai đã xóa
shitbo
18 tháng 2 2020 lúc 21:17

\(\text{Ta có:}\)

\(\hept{\begin{cases}\left(x-1\right)^{2018}\ge0\\\left(y+3\right)^{2020}\ge0\\\left(z-5\right)^{2022}\ge0\end{cases}}\text{mà:}\left(x-1\right)^{2018}+\left(y-2\right)^{2020}+\left(z-3\right)^{2022}=0\text{ nên:}\)

\(\hept{\begin{cases}\left(x-1\right)^{2018}=0\\\left(y+3\right)^{2018}=0\\\left(z-5\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-3\\z=5\end{cases}}\)

bạn tự kết luận

Khách vãng lai đã xóa
Yến
Xem chi tiết
Blaze
12 tháng 8 2021 lúc 18:53

Bài tập đâu rồi?

Nguyễn Ngô Sáng
Xem chi tiết
linh nữ vương
19 tháng 9 2021 lúc 15:10

hỏi khó thế anh zai

Khách vãng lai đã xóa
Nguyển Trọng Đức Quý
Xem chi tiết