số dư khi chia đa thức x^5+8 cho x+1
Help me !! T.T
Tìm nghiệm của đa thức f(x) = x^6 - x^3 + x^2 - x + 1
Help me
\(F\left(x\right)=x^6-x^3+x^2-x+1\)
\(=x^6-x^3+\dfrac{1}{4}+x^2-x+\dfrac{1}{4}+\dfrac{1}{2}\)
\(=\left(x^3\right)^2-2x^3\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+x^2-2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
\(=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)
\(=>F\left(x\right)\) vô nghiệm
Biết rằng một đa thức f(x) chia hết cho (x-a) khi và chỉ khi f(a)=0. Hãy tìm các giá trị của m, n, k sao cho:
a. Đa thức f(x)=x^3+mx^2+nx+2 chia cho x+1 dư 5, chia cho x+2 dư 8.
b. Đa thức f(x)=x^3+mx+n chia cho x+1 thì dư 7, chia cho x-3 thì dư -5.
c. Đa thức f(x)=mx^3+nx^2+k chia hết cho x+2, chia cho x^2-1 thì dư x+5.
a) Ta có f(x) - 5 \(⋮\)x + 1
=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1
=> x3 + mx2 + nx - 3 \(⋮\)x + 1
=> x = - 1 là nghiệm đa thức
Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0
<=> m - n = 4 (1)
Tương tự ta được f(x) - 8 \(⋮\)x + 2
=> x3 + mx2 + nx - 6 \(⋮\) x + 2
=> x = -2 là nghiệm đa thức
=> (-2)3 + m(-2)2 + n(-2) - 6 = 0
<=> 2m - n = 7 (2)
Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)
Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2
b) f(x) - 7 \(⋮\)x + 1
=> x3 + mx + n - 7 \(⋮\) x + 1
=> x = -1 là nghiệm đa thức
=> (-1)3 + m(-1) + n - 7 = 0
<=> -m + n = 8 (1)
Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3
=> x = 3 là nghiệm đa thức
=> 33 + 3m + n + 5 = 0
<=> 3m + n = -32 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)
Vậy f(x) = x3 - 10x -2
biết rằng đa thức f(x) khi chia cho x-2 có số dư 6067, khi chia cho x+3 có số dư -4043. Tìm đa thức dư khi f(x) chia cho x2+x-6
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$
Đa thức p(x) khi chia cho x-2 thì dư 5, khi chia cho x-3 thì dư 7. Tìm phần dư của đa thức P(x) khi chia cho (x-2)(x-3)
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
1) Đa thức P(x) khi chia cho x-2 thì dư 5, khi chia cho x-3 thì dư 7. Phần dư của đa thức P(x) khi chia cho (x-2)(x-3) là?
2) tÌM ĐA THỨC P(X) biết p(x) chia x-1 dư -2, P(x) chia cho x+1 dư 3, P(x) chia x2 -1 được thương là 2x và còn dư
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
khi chia đa thức f(x) cho x + 3 thf dư (- 15 ), chia cho x - 5 thì dư 9 . tìm phần dư của phép chia đa thức f(x) cho ( x + 3)( x - 5)
Đa thức P(x) chia cho x- 2 dư 5 , chia cho x - 3 dư 7 Tìm số dư khi chia P(x) cho (x - 2)(x - 3)
Gọi thương trong phét chia của P(x) cho x - 2 và x - 3 lần lượt là Q(x) , G(x)
Ta có : P(x) = (x - 2).Q(x) + 5 với mọi x (1)
P(x) = (x - 3).G(x) + 7 với mọi x (2)
Khi chia đa thức P(x) cho đa thức bậc hai (x - 2)(x - 3) thì số dư chỉ có thể có rạng R(x) = ax + b
Ta có : P(x) = (x - 2)(x - 3).h(x) + ax + b với mọi x (3)
Thay x = 2 vào (1) ta có : P(2) = 5 , thay vào 3 ta có : P(2) = 2a + b
Nên 2a + b = 5 (4)
Thay x = 3 vào (2) ta có : P(3) = 7 , thay vào (3) ta có : P(3) = 3a + b
Nên 3a + b = 7 (5)
Từ (4) và (5) => 3a + b - (2a + b) = 7 - 5
=> a = 2 => b = 5 - 2.2 = 1
Vậy số dư khi chia P(x) cho (x - 2)(x - 3) là : 2x + 1
Một đa thức khi chia cho x+1 thì dư 2, chia cho x+2 thì dư 3. Tìm số dư khi đa thức đó chia cho (x+1)(x+2)