Phân tích đa thức thành nhân tử
X^3 -6x^2+9x-2
Phân tích đa thức thành nhân tử: 1, x^3+2x^2-6x-27 2, 9x^2+6x-4y^2-4y 3, 12x^3+4x^2-27x-9
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)
Phân tích đa thức thành nhân tử
27x^3+27x^2+9x+1
-x^3-3x^2-3x-1
- 8+12x-6x^2+x^3
a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)
c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)
phân tích đa thức thành nhân tử:\(x^3+9x^2+6x-16\)
\(x^3+9x^2+6x-16\)
\(=x^3+x^2-2x+8x^2+8x-16\)
\(=x\left(x^2+x-2\right)+8\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x+8\right)\)
\(=\left(x^2-x+2x-2\right)\left(x+8\right)\)
\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]\left(x+8\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x+8\right)\)
Phân tích đa thức thành nhân tử x3+6x2+9x
\(x^3+6x^2+9x=x\left(x^2+6x+9\right)=x\left(x+3\right)^2\)
\(x^3+6x^2+9x\)
\(=x\left(x^2+6x+9\right)\)
\(=x\left(x+3\right)^2\)
phân tích đa thức thành nhân tử
1/ \(6x^2y-9xy^2+3xy\)
2/ \(\left(4-x\right)^2-16\)
3/ \(x^3+9x^2-4x-36\)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
phân tích đa thức thành nhân tử
9x^2-6x^2-3
\(9x^2-6x^2-3\)
\(=3x^2-3\)
\(=3\left(x^2-1\right)\)
\(=3\left(x-1\right)\left(x+1\right)\)
phân tích đa thức thành nhân tử
9x^2-6x^2-3
\(9x^2-6x^2-3\)
\(=3x^2-3\)
\(=3.\left(x^2-1\right)\)
\(=3.\left(x-1\right).\left(x+1\right)\)
\(9x^2-6x^2-3\)
\(=3x^2-3\)
\(=3.\left(x^2-1\right)\)
\(=3.\left(x-1\right).\left(x+1\right)\)
Nguồn: kudo shinichi
phân tích đa thức thành nhân tử:
\(x^3-9x^2+6x+16\)
\(x^3-9x^2+6x+16=\left(x^3+x^2\right)-\left(10x^2+10x\right)+\left(16x+16\right)\)
\(=x^2.\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2-10x+16\right)\)
\(=\left(x+1\right).\left[\left(x^2-8x\right)-\left(2x-16\right)\right]\)
\(=\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
Phân tích đa thức thành nhân tử
x3-9x2+6x+16
x^3-9x^2+6x+16
=x^3+x^2-10x^2-10x+16x+16
=(x^3+x^2)-(10x^2+10x)+(16x+16)
=x^2(x+1)-10x(x+1)+16(x+1)
=(x+1)(x^2-10x+16)
=(x+1)(x^2-2x-8x+16)
=(x+1)[(x^2-2x)-(8x-16)]
=(x+1)[x(x-2)-8(x-2)]
=(x+1)(x-2)(x-8)