Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vietha2k9
Xem chi tiết
Hắc Hoàng Thiên Sữa
28 tháng 5 2021 lúc 16:48

Ta Có:

Cho biểu thức trên là B

\(b\)\(=\)\(10\)\(^n\)\(72n\)\(-1\)

 \(=10\)\(^n\)\(+72n\)\(-1\)

\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Ta Có:

Cho biểu thức trên là B

bb==1010nn72n72n−1−1

 =10=10nn+72n+72n−1−1

=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

InuYashA
Xem chi tiết
nguyễn ngọc linh
Xem chi tiết
nguyễn ngọc linh
20 tháng 7 2015 lúc 10:30

chính xác 100/100

 

Hoàng Tử của dải Ngân Hà
9 tháng 8 2016 lúc 9:48

d) \(10^n+72n-1\)\(=100...0-1+72n\)

=\(999...9-9n+81n\)

     n chữ số 9

=\(9.\left(111...1-n\right)+81n\)

VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9

mà 81n chia hết 9 => 10n + 72n -1 chia hết 9

b) \(10^n+18n-1\)

<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)

          n

<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)

             n

<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)

               n

<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)

<=> \(9.9k+27n\)chia hết \(27\)

<=> \(81k+27n\)chia hết \(27\)

Sky _ Nguyễn
9 tháng 8 2016 lúc 9:51

a) \(10^{28}+8\)chia hết cho 72

\(\Rightarrow10^{28}:9\)dư 1

\(\Rightarrow8:9\)dư 8

\(\Rightarrow1+8=9\)chia hết cho 9

\(\Rightarrow10^{28}+8\)chia hết cho 9 ( 1 )

\(10^{28}\)chia hết cho 8 ( vì 3 sớ tận cùng là 000 chia hết cho 8 )

8 chia hết cho 8

\(\Rightarrow10^{28}+8\)chia hết cho 8 ( 2 )

Từ ( 1 ) và ( 2 ) kết hợp với UCLN ( 8 ; 9 ) = 1 => ĐPCM

b) \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}.\left(2^4+1\right)=2^{20}.17\)chia hết cho 7 => ĐPCM

c) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

d

Dat Dat
Xem chi tiết
nguyễn thu hiền
2 tháng 11 2015 lúc 21:37

b, 10n-1-9+27n

=99...9 - 9n+27n

=9.(11...1 - n) +27 chia hết cho 27

 

Nguyễn Thị Diệu Huyền
Xem chi tiết
Nguyễn Thị Diệu Huyền
11 tháng 12 2018 lúc 12:37

Bài này của lớp 6

Sư tử đáng yêu
11 tháng 12 2018 lúc 18:20

bài này mà lp 1 ak

SHIBUKI RAN
23 tháng 12 2018 lúc 10:12

bạn thuộc cung sư tử à mk cũng vậy

hoàng gia lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 12:58

b: \(B=16^5+2^{15}\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(45⋮9;99⋮9;180⋮9\)

Do đó: \(45+99+180⋮9\)

=>\(C⋮9\)

d: \(D=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(D=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)\)

=>D chia hết cho cả 3 và 5

 

Trịnh Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 3 2017 lúc 5:39

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Chứng  minh   J = 10 n + 18 n − 1  chia hết cho 9.

Bước 2. Chứng minh  J = 10 n + 18 n − 1  chia hết cho 3.

Ta có:

J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n  

=> J chia hết cho 9.

+) Chứng minh  11...1 + 2 n ⋮ 3 .

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n .

Suy ra 11...1 và n có cùng số dư trong phép chia cho 3.

=> 11...1-n chia hết cho 3.

=> (11...1+2n) ⋮ 3

⇒ J ⋮ 27

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 11 2018 lúc 17:34

Trần Long Tăng
Xem chi tiết
Phạm Thị Minh Thư
29 tháng 7 2017 lúc 16:32

cho A = 10n+18n-1 chia hết cho 27

suy ra 10n+18n-1 chia hết cho 27

suy ra n=1