giai phuong trinh
\(x^3-\sqrt[3]{6+\sqrt[3]{x+6}}=6\)6
Giai phuong trinh:
\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
\(\Leftrightarrow\sqrt[3]{x+3}-2-\left(\sqrt[3]{6-x}-1\right)=0\)
\(\Leftrightarrow\dfrac{x+3-8}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}-\dfrac{6-x-1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)
\(\Leftrightarrow\dfrac{x-5}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{x-5}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}\right)=0\)
Dễ thấy: \(\dfrac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}>0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+3}=a\\\sqrt[3]{6-x}=b\end{matrix}\right.\)thì co hệ
\(\left\{{}\begin{matrix}a=1+b\left(1\right)\\a^3+b^3=9\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1+b\right)^3+b^3=9\)
\(\Leftrightarrow\left(b-1\right)\left(2b^2+5b+8\right)=0\)
Dễ thây \(2b^2+5b+8>0\)
\(\Rightarrow b=1\)
\(\Rightarrow\sqrt[3]{6-x}=1\)
\(\Leftrightarrow x=5\)
\(pt\Leftrightarrow\sqrt[3]{x+3}=\sqrt[3]{6-x}+1\)
\(\Leftrightarrow2x-4=3\sqrt[3]{6-x}\left(\sqrt[3]{6-x}+1\right)\)
\(\Leftrightarrow2x-4=3\sqrt[3]{6-x}\sqrt[3]{x+3}\)
\(\Leftrightarrow8x^3-32x^2+64x-64=27\left(6-x\right)\left(x+3\right)\)
\(\Rightarrow...\)
Giai phuong trinh:
\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
\(\Leftrightarrow\sqrt[3]{x+3}-2-\left(\sqrt[3]{6-x}-1\right)=0\)
\(\Leftrightarrow\frac{x+3-8}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}-\frac{6-x-1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}\right)=0\)
Dễ thấy :
\(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}>0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\)
Chúc bạn học tốt !!!
giai phuong trinh sau:
\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)
Dấu \(=\)xảy ra khi \(AB\ge0\)
dat \(\sqrt{x-1}\) = t
ta có: \(\sqrt{x+3+4t}\)+ \(\sqrt{x+8-6t}\)= 5
x + 3 + 4t + x + 8 - 6t = 25
2x - 2t = 14 ( chia cả 2 vế cho 2)
x - t = 7
t = x - 7
thay t = \(\sqrt{x}-1\)vào ta được:
x - 7 = \(\sqrt{x-1}\)
( x - 7 )2 = x - 1
x2 -14x + 49 = x - 1
x2 - 15x + 50 = 0
k biết đúng hay k
OoO Ledegill2 OoO. Ban co the giai thich ro hon giup minh duoc khong. hi
Giai phuong trinh: \(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\)
\(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\)
Xét \(\left|x\right|=1\Leftrightarrow\sqrt{5-1}=\sqrt[3]{3-2}+1\)(đúng)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Xét \(\left|x\right|>1\Rightarrow\sqrt{5-x^6}< \sqrt[3]{3x^4-2}+1\)(loại)
Xét \(\left|x\right|< 1\Rightarrow\sqrt{5-x^6}>\sqrt[3]{3x^4-2}+1\)(loại)
Vậy Pt có nghiệm (1;-1)
giai phuong trinh
\(\sqrt{x}-5+\dfrac{1}{3}\sqrt{9x}-45=\dfrac{1}{5}\sqrt{25x}-125=6\)
giup minh voi
Sửa đề: \(\sqrt{x-5}+\dfrac{1}{3}\sqrt{9x-45}=\dfrac{1}{5}\sqrt{25x-125}+6\)
\(\Leftrightarrow\sqrt{x-5}+\dfrac{1}{3}\cdot3\cdot\sqrt{x-5}-\dfrac{1}{5}\cdot5\sqrt{x-5}=6\)
\(\Leftrightarrow\sqrt{x-5}=6\)
=>x-5=36
hay x=41
giai he phuong trinh
\(\hept{\begin{cases}x^2-4\sqrt{3x-2}+10=2y\\y^2-6\sqrt{4y-3}+11=x\end{cases}}\)
giai he phuong trinh \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{y-1}=2+\sqrt{6}\\x+y=5+2\sqrt{6}\end{matrix}\right.\)
Giai phuong trinh va he phuong trinh:
a) \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)
b) \(x^2+3x+1=\left(x+3\right).\sqrt{x^2+1}\)
c) \(\left\{{}\begin{matrix}x^2+y^2=11\\x+xy+y=3+4\sqrt{2}\end{matrix}\right.\)
giai phuong trinh\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
pt <=> \(2x^2-20x+54-2\sqrt{x-4}-2\sqrt{6-x}=0\)
<=> \(\left(2x^2-20x+50\right)+\left(x-4-2\sqrt{x-4}+1\right)+\left(6-x-2\sqrt{6-x}+1\right)=0\)
<=> \(2\left(x-5\right)^2+\left(\sqrt{x-4}-1\right)^2+\left(\sqrt{6-x}-1\right)^2=0\)
<=> x = 5