so sánh tan a- cot a với 0 (với a là góc nhọn)
Sử dụng định nghĩa tỉ số lượng giác của 1 góc nhọn để chứng minh rằng với góc nhọn a tùy ý ta có:
tan a=\(\dfrac{sina}{cosa}\) cot a=\(\dfrac{cosa}{sina}\) tan a . cot a =1 sin2a + cos2a= 1
cho tam giác ABC vuông tại A, đội dài 3 cạnh AB=c,AC=b,BC=a gọi abc = ∝. so sánh a) tan ∝ với sin ∝/ cot ∝ b) cot ∝ với cos ∝ /sin ∝ c) tan ∝ × cot ∝ với 1
b: \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
Tìm góc nhọn a biết 0 < a < 30 và tan(2a+30) = cot a
Ta có : \(\tan\left(2a+30\right)=\cot a=\dfrac{1}{\tan a}\)
\(\Rightarrow\tan a.\tan\left(2a+30\right)=1\)
\(\Rightarrow\cot\left(90-a\right).\tan\left(2a+30\right)=1\)
\(\Rightarrow90-a=2a+30\)
=> a = 20
Vậy ..
cho tam giác ABC vuông tại A, đội dài 3 cạnh AB=c,AC=b,BC=a gọi abc = ∝. so sánh
a) tan ∝ với sin ∝/ cot ∝
b) cot ∝ với cos ∝ /sin ∝
c) tan ∝ × cot ∝ với 1
ta có:
. \(\hept{\begin{cases}tan\alpha=\frac{sin\alpha}{cos\alpha}\\cot\alpha=\frac{cos\alpha}{sin\alpha}\\tan\alpha\times cot\alpha=1\end{cases}}\)
1.tính cos a, tan a, cot a nếu biết a nhọn và sin a =3/5
2. tính sin x, cos x nếu biết x nhọn và tan x=12/35
3. cho góc a nhọn và cos a =5/13.tính sin a, tan a và cot a
giúp mình với gấp lắm rồi mình sẽ tick cho bạn nào giải được. cảm ơn trước nhé
Câu 50**: Cho góc nhọn α tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\)bằng
A. \(tan^2\alpha\) ; B . \(cot^2\) α ; C . 0 ; D. 1 .
giải hộ mik vs
Cho góc lượng giác \(\alpha \). So sánh
a) \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\) và 1
b) \(\tan \alpha .\cot \alpha \,\,\) và 1 với \(\cos \alpha \ne 0;\sin \alpha \ne 0\)
c) \(1 + {\tan ^2}\alpha \,\,\) và \(\frac{1}{{{{\cos }^2}\alpha }}\) với \(\cos \alpha \ne 0\)
d) \(1 + {\cot ^2}\alpha \,\) và \(\frac{1}{{{{\sin }^2}\alpha }}\) với \(\sin \alpha \ne 0\)
a) \({\cos ^2}\alpha + {\sin ^2}\alpha = 1\)
b) \(\tan \alpha .\cot \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\)
c) \(\frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha + 1\)
d) \(\frac{1}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha \)
1. Với \(\alpha\) là góc nhọn và \(\tan\alpha=\dfrac{1}{2}\). Không dùng máy tính hãy tính \(\cos\left(90^o-\alpha\right)\)
2.
a. \(\sin\alpha=\dfrac{4}{5}\). Tính \(\tan\alpha\)
b. so sánh \(\tan28^o\) và \(\sin28^o\)
Câu 1:
Ta có: \(\cos\left(90^0-\alpha\right)=\sin\alpha\)
\(\Leftrightarrow\sin\alpha=1:\sqrt{\dfrac{1^2+2^2}{1}}=1:\sqrt{5}=\dfrac{\sqrt{5}}{5}\)
Câu 2:
a) \(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)
\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
Với \(\alpha\) là góc nhọn
a) CMR: \(\tan\alpha+\cot\alpha\ge2\)
b) Tìm GTNN của \(H=\tan^3\alpha+\cot^3\alpha\)
\(tan^3a+cot^3a=\frac{sin^3a}{cos^3a}+\frac{cos^3a}{sin^3a}\ge2\sqrt{\frac{sin^3a}{cos^3a}.\frac{cos^3a}{sin^3a}}=2\)