cho da thuc P(x)=x2 + ax + b va Q(x)=x2 + cx + d cho x1;x2 la hai so khac nhau .Chung minh neu P(x) VA Q(x) co cung nghiem la x1;x2 thi P(x)=Q(x)
cho da thuc P(x)=ax+b. Tìm điều kiện của a và b để P(x1+x2)=P(x1)+P(x2)
Ta có :
\(P\left(x_1+x_2\right)=a.\left(x_1+x_2\right)+b\)
\(P\left(x_1\right)+P\left(x_2\right)=a.x_1+b+a.x_2+b=a\left(x_1+x_2\right)+2b\)
Theo đề bài ta có \(a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\). Lấy VP - VT, ta được b = 0
Như vậy với b = 0 và mọi số thực A thì \(P\left(x_1+x_2\right)=P\left(x_1\right)+P\left(x_2\right)\)
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
xét hai đa thức p(x)=x^2+ax+b,q(x)=x^2+cx+d và x1,x2 là hai số khác nhau. CMR nếu p(x)và q(x) cùng nhận x1,x2 là nghiệm thì p(x)=q(x)
\(P\left(x\right)-Q\left(x\right)=x^2+ax+b-x^2-cx-d=x\left(a-c\right)+b-d\)
\(P\left(x_1\right)-Q\left(x_1\right)=x_1\left(a-c\right)+b-d=0\) (1)
\(P\left(x_2\right)-Q\left(x_2\right)=x_2\left(a-c\right)+b-d=0\) (2)
-Từ (1) và (2) suy ra:
\(x_1\left(a-c\right)=x_2\left(a-c\right)\)
-Vì \(x_1\ne x_2\Rightarrow a-c=0\Rightarrow a=c\Rightarrow b=d\)
-Vậy \(P\left(x\right)=Q\left(x\right)\forall x\)
Cho 2 đa thức f(x) = x2 + ax + b và g(x) = x2 + cx +d
.Chứng Minh Rằng: Nếu có 2 giá trị x1, x2 của x ( x1 ≠ x2) sao cho f(x1)=g(x1) hay f(x2) = g(x2) thì ta luôn có a=c và b=d
Giúp toiii vớiiii
cảm ơn ạ!
a. Xac dinh a de nghiem cua da thuc f(x) = 2x-4 cung la nghiem cua da thuc g(x) = x^2 - ax +2b.
b. Cho f(x) = ax^3 + bx^2 + cx + d, trong do a; b; c; d la hang so va thoa man : b = 3a + c
Chung to rang : f(1) = f(-2)
cho x va y la hai dai luong ti le thuan, biet x1 va y1; x2 va y2 la 2 cap gia tri tuong ung.Biet x1 + x2=-1 va y1 + y2=-5. Hoi hai dai luong x va y lien he voi nhau theo cong thuc nao?
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)=f(x1)+f(x2)
Với mọi x1,x2 thuộc Q
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)=f(x1)+f(x2)
Với mọi x1,x2 thuộc Q
\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)
\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)
\(\Rightarrow b=2b\)
\(\Rightarrow2b-b=0\Rightarrow b=0\)