Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le thi minh thu
Xem chi tiết
Le Thi Khanh Huyen
25 tháng 4 2017 lúc 20:31

Ta có :

\(P\left(x_1+x_2\right)=a.\left(x_1+x_2\right)+b\)

\(P\left(x_1\right)+P\left(x_2\right)=a.x_1+b+a.x_2+b=a\left(x_1+x_2\right)+2b\)

Theo đề bài ta có \(a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\). Lấy VP - VT, ta được b = 0

Như vậy với b = 0 và mọi số thực A thì \(P\left(x_1+x_2\right)=P\left(x_1\right)+P\left(x_2\right)\)

Nguyễn Tiến Đức
Xem chi tiết
Nguyễn Tiến Đức
Xem chi tiết
vlkt
Xem chi tiết
Trần Tuấn Hoàng
12 tháng 4 2022 lúc 21:11

\(P\left(x\right)-Q\left(x\right)=x^2+ax+b-x^2-cx-d=x\left(a-c\right)+b-d\)

\(P\left(x_1\right)-Q\left(x_1\right)=x_1\left(a-c\right)+b-d=0\) (1)

\(P\left(x_2\right)-Q\left(x_2\right)=x_2\left(a-c\right)+b-d=0\) (2)

-Từ (1) và (2) suy ra:

\(x_1\left(a-c\right)=x_2\left(a-c\right)\)

-Vì \(x_1\ne x_2\Rightarrow a-c=0\Rightarrow a=c\Rightarrow b=d\)

-Vậy \(P\left(x\right)=Q\left(x\right)\forall x\)

 

ht-klih
Xem chi tiết
Hà Khánh Dung
Xem chi tiết
Trần Tiến Đạt
Xem chi tiết
Trần Tiến Đạt
Xem chi tiết
Trần Tuấn Hoàng
22 tháng 3 2022 lúc 20:19

\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)

\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)

\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)

\(\Rightarrow b=2b\)

\(\Rightarrow2b-b=0\Rightarrow b=0\)

Black Otaku
Xem chi tiết