Cho M= 5+52+53+....+560
a, Tình M
b, Chứng minh M\(⋮6\)
c, Tìm số tự nhiên n biết M+5=5n-5
Cho Tìm số tự nhiên biết .
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
cho M = 5 + 52+53+54+.....+560
a) tính M
b)chứng minh M\(⋮\)6
c)Tìm số tự nhiên n biết M+5=5n-5
a) 5M=5(\(5+5^2++.......+5^{60}\)
5M=\(5^2+5^3+...+5^{61}\)
5M-M=\(\left(5^2+5^3+...+5^{61}\right)-\left(5+5^2+5^3+...+5^{60}\right)\)
4M=\(5^{61}-5\)
M=\(\left(5^{61}-5\right):4\)
b) \(\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{59}+5^{60}\right)\)
\(5\left(1+5\right)+5^3\left(1+5\right)+...+5^{59}\left(1+5\right)\)
\(5\cdot6+5^3\cdot6+...+5^{59}\cdot6\)
\(6\left(5+5^3+5^5+...+5^{59}\right)\)
\(\Rightarrow M⋮6\)
Bài 5:Cho a chia hết cho c và b chia hết cho c .Chứng minh rằng ma+nb chia hết cho c , ma - nb chia hết cho c với m,n e N
Bài 6:Chứng minh rằng
a)Tổng của ba số tự nhiên liên tiếp chia hết cho 3.
b) Tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Bài 7:tìm số tự nhiên n biết
a)n+10 chia hết cho n
b)n+16 chia hết cho n+1
c)3n+24 chia hết cho n+2
giúp m với tối m phải nộp r
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Cho T = 5+52+53+....+52000. Tìm số tự nhiên N sao cho 4xT+5=5m
\(T=5+5^2+5^3+...+5^{2000}\)
=>\(5T=5^2+5^3+5^4+...+5^{2001}\)
=>\(5T-T=5^2+5^3+...+5^{2001}-5-5^2-...-5^{2000}\)
=>\(4T=5^{2001}-5\)
=>\(4T+5=5^{2001}\)
Sửa đề:\(4T+5=5^m\)
=>\(5^m=5^{2001}\)
=>m=2001
T=5+52+53+...+52000
=>5T=52+53+54+...+52001
=>5T−T=52+53+...+52001−5−52−...−52000
=>4T=52001−5
=>4T+5=52001
Ta có:4T+5=5m
=>52001=5m
=>m=2001
Vậy m=2001
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
Cho biểu thức: M = 5 + 52 + 53 + … + 580. Chứng tỏ rằng:
a) M chia hết cho 6.
b) M không phải là số chính phương.
a) M = \(5+5^2+5^3+...+5^{80}\)
\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)
\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)
=> M chi hết cho 6 => điều phải chứng minh
) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)
M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)
M= 5.6 + 5^3.6 + … + 5^79.6
M = 6(5+5^3+…+5^79) chia hết cho 6
b) Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
a) Cho A=1+5+52+53+...+52021
Chứng minh A ⋮ 31
b) chứng minh rằng tổng của 4 số tự nhiên không chia hết cho 4
Câu 1 : 1+52+53+54+...+5404:31
Câu 2 : a ) Chứng minh : Trong 3 Số tự nhiên liên tiếp có một số chia hết cho 3
b ) Chứng minh : Trong 5 Số tự nhiên liên tiếp có một số chia hết cho 5