B1: cho hcn abcd, vẽ bh vuông góc ac (h thuộc ac). Gọi m,k lần lượt là trung điểm ah và dc; i,o lần lượt là trung điểm ab, ic
A) cm: ic = kb và mo=1/2 ic
b) tính góc bmk
cho hình chữ nhật ABCD ke BH vuông góc với AC (H thuộc AC). Gọi M và K lần lượt là trung điểm của AH và DC :CMR MK vuông góc với MB
Cho HCN ABCD . Vẽ BH vuông góc với AC ( H thuộc AC ) . Gọi M là trung điểm AH, K trung điểm CD. Cm: BM vuông góc vs NK
Cho HCN ABCD. Vẽ BH vuông góc AC (H thuộc AC).
Gọi M là trung điểm của AH, K là trung điểm của CD.
CMR: BM vuông góc MK
Cho hình chữ nhật ABCD. Kẻ BH vuông góc AC. Gọi M là trung điểm AH
Cho hình chữ nhật ABCD có AB<BC,kẻ BH vuông góc AC (H thuộc AC).Gọi M,K,N lần lượt là trung điểm của AH,CD và BH
a) Chứng minh MNCK là hình bình hành
b)Chứng minh BM vuông góc MK
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
Cho hình chữ nhật ABCD ,BH vuông góc AC(H thuộc AC) gọi P,Q,R lần lượt là trung điểm của BH,AH,DC a-CM: tứ giác ABPQ là hình thang b- tứ giác PQRC là hình gì c- CM: góc BQR=90°
a: Xét ΔHAB có
P là trung điểm của HB
Q là trung điểm của HA
Do đó: PQ là đường trung bình của ΔHAB
Suy ra: PQ//AB
hay AQPB là hình thang
Cho hình chữ nhật ABCD, vẽ BH vuông góc AC (H thuọc AC). Gọi M, K lần luợt là trung điểm của AH vàDC ; I,O lần lượt là trung điểm của AB và IC
a) Chứng minh IC=KB và MO=1/2IC
b) Tính số đo góc BMK?
a, Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE và CF cắt nhau tại H. chứng minh:
- góc AEF=ABC
- EB là tia pg góc DEF
b, Cho hcn ABCD. BH vuông góc AC(H thuộc AC). Gọi M,N lần lượt là trung điểm AH và CD.
Cm: MN vuông góc MB
cho hình chữ nhật ABCD. Kẻ BH vuông góc AC tại H. gọi M và K lần lượt là trung điểm AH và CD. Chứng minh rằng : MB vuông góc MK.
(tự vẽ hình nha)
a,Ta có AM+MB=AB
NC+CD=DC
mà AB=CD(ABCD là HCN)
AM = NC (gt)
=> MB=DN (1)
Ta lại có AB//DC nên MB//DN (2)
Từ (1) và (2) => MBND là HBH
b,ta có : P là trung điểm AB
K là trung điểm AH
=>PK là đường trung bình tam giác AHB
=PK//BH (*)
mà BH//DM (MBND là HBH) (**)
từ (*) và (**) => PK//DM (ĐPCM)
c,do PK là đường trung bình
=>PK=1/2BH
=>PK = BH/2 = 6/2 =3cm
P là trung điểm AB
=> AP = 1/2AB = AB/2 = 10/2 = 5cm
ta có BH⊥AC mà BH//PK => AC⊥PK
=>△APK vuông tại K
S△APK là = 1/2AK.KP = 1/2.5.3 = 7,5
phần d mình chưa nghĩ ra