Cho \(a;b;c\ge0\) và \(a+b+c=1\)
Tìm GTLN của \(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Bài làm:
Ta có: \(a;b;c\ge0\) và \(a+b+c=1\)
Áp dụng Bđt Cô-si cho 2 số không âm, ta có:
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=\sqrt{\frac{3}{2}}\left(\sqrt{\left(a+b\right).\frac{2}{3}}+\sqrt{\left(b+c\right).\frac{2}{3}}+\sqrt{\left(c+a\right).\frac{2}{3}}\right)\)
\(\le\sqrt{\frac{3}{2}}\left(\frac{a+b+\frac{2}{3}}{2}+\frac{b+c+\frac{2}{3}}{2}+\frac{c+a+\frac{2}{3}}{2}\right)\)\(=\sqrt{\frac{3}{2}}.2=\sqrt{6}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)