Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn ánh thành danh
Xem chi tiết
Lưu Phương Anh
Xem chi tiết

đề có sai không zợ 

nói tg ABC cân mà AB>AC

Khách vãng lai đã xóa

a)\(\text{ Xét }\Delta ABH\)\(\text{và }\Delta ACH\)\(\text{có}\)

\(AB=AC\)

\(\widehat{ABH}=\widehat{ACH}\left(\Delta\text{ABC cân}\right)\)

\(BH=CH\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)

\(\text{Mà }\widehat{AHB}+\widehat{AHC}=180^o\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\)

\(\Rightarrow AH\perp BC\)

b) \(\text{Có }BH=\frac{BC}{2}\left(gt\right)\)
\(\text{Mà BC = 4 ( GT )}\)
\(\Rightarrow BH=4cm\)
\(\text{Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta được :}\)
\(\text{AH^2 + BH^2 = AB^2}\)
\(\Rightarrow AH^2+2^2=6^2\)
\(\text{=> AH^2 = 32}\Rightarrow AH^2=32\)\(\Rightarrow AH^2=32\)
\(\Rightarrow AH=\sqrt{32}\)
\(\text{Vậy }AH=\sqrt{32}\)

Khách vãng lai đã xóa
Orchid Briona
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2019 lúc 8:26

+) Xét tam giác EIA vuông tại I nên :

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét hai tam giác ABH và ∆EAI có:

AB = AE ( vì ABDE là hình vuông)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Suy ra: ∆ABH = ∆ EAI ( cạnh huyền – góc nhọn)

⇒ AH = EI ( hai cạnh tương ứng)

+) Tương tự hai tam giác vuông ACH và GAJ bằng nhau.

⇒ AH = GJ.

Suy ra EI = AH = GJ.

+) Xét ΔEKI và ΔGKJ có:

EI = GJ ( chứng minh trên)

∠(IKE) = ∠(JKG) (đối đỉnh).

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

do đó ΔEKI = ΔGKJ ( cgv – gn)

suy ra: KE = KG

Từ đó ta có K trung điểm của EG. Vậy AK là trung tuyến của tam giác AEG.

Trần Ngọc Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2021 lúc 14:35

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

DO đó: ΔAHB=ΔAHC

Đặng QH
Xem chi tiết
Tran Le Khanh Linh
9 tháng 3 2020 lúc 9:14

A B C H

a) Xét tam giác ABH và tam giác ACH có
AB=AC (tam giác ABC cân tại A)

\(\widehat{ABH}=\widehat{ACH}\)(tam giác ABC cân tại A)

BH=HC(H là trung điểm BC)

=> Tam giác ABH = Tam giác ACH (cgc)

b) Vì tam giác ABC cân tại A (gt) và H là trung điểm BC(gt)

=> AH là đường trung tuyến đồng thời là đường cao của tam giác ABC

=> AH vuông góc với BC(đpcm)

Khách vãng lai đã xóa
Edogawa Conan
9 tháng 3 2020 lúc 9:23

A C B H E K 1 2

a) Xét t/giác ABH và t/giác ACH

c: AB = AC (gt)

  BH = CH (gt)

  AH: chung

=> t/giác ABH = t/giác ACH (c.c.c)

b) Ta có: t/giác ABH = t/giác ACH (cmt)

=> \(\widehat{AHB}=\widehat{AHC}\)(2 góc t/ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(kề bù)

=> \(\widehat{AHB}=\widehat{AHC}=90^0\)

=> AH \(\perp\)BC

c) Ta có: BH = CH = 1/BC = 1/2.6 = 3 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABH vuông tại H, ta có:

AB2 = AH2 + BH2 => AH2 = 52 - 32 = 16

=> AH = 4 (cm)

d) Ta có: t/giác AHB = t/giác AHC (cmt)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng)

Xét t/giác AHE và t/giác AHK

có: \(\widehat{A_1}=\widehat{A_2}\)(cmt)

  AH : chung

\(\widehat{AEH}=\widehat{AKH}=90^0\)(gt)

=> t/giác AHE = t/giác AHK (ch - gn)

=> HE = HK (2 cạnh t/ứng)

e) Ta có: t/giác AHE = t/giác AHK (cmt)

=> AE = AK (2 cạnh t/ứng)

=> t/giác AEK cân tại A

=> \(\widehat{AEK}=\widehat{AKE}=\frac{180^0-\widehat{A}}{2}\)(1)

T/giác ABC cân tại A

=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AEK}=\widehat{B}\)

Mà 2  góc này ở vị trí đồng vị

=> EK // BC

Khách vãng lai đã xóa
Lê Thanh Thúy
Xem chi tiết
Đối tác
Xem chi tiết
Đối tác
15 tháng 2 2020 lúc 16:27

Ko cần vẽ hình

Khách vãng lai đã xóa
Nguyễn Phương Uyên
15 tháng 2 2020 lúc 16:36

a, xét tam giác ACH và tam giác KCH có : CH chung

góc AHC = góc KHC = 90 

AH = HK do H là trđ của AK (gt)

=> tam giác ACH = tam giác KCH (2cgv)

b, xét tam giác  AEC và tam giác DEB có : góc BED = góc CEA (đối đỉnh)

BE= EC do E là trđ của BC (GT)

AE = ED do E là trđ của AD (gt)

=> tam giác AEC = tam giác DEB (c-g-c)

=> BD = AC (đn)

 tam giác ACH = tam giác KCH (câu a) => AC = CK (đn)

=> BD = CK (tcbc)

c, xét tam giác AEH và tam giác KEH có: EH chung

AH = HK (câu a)

góc AHE = góc KHE = 90

=> tam giác AEH = tam giác KEH (2cgv)

=> góc AEH = góc KEH mà EH nằm giữa EA và EK 

=> EH là phân giác của góc AEK (đn)

Khách vãng lai đã xóa
Lưu Phương Anh
Xem chi tiết
đại tỷ moon
8 tháng 4 2019 lúc 21:45

bài này khá dễ, hình em tự vẽ nhé

a. Xét 2 tg ABK và ACK có:

AK chung

góc AKB = góc AKC ( đều = 900)

BK=CK ( vì AK là trung tuyến)

=> ABK = ACK ( 2 cạnh góc vuông)

Ta có: trong tam giác ABC cân, AK vừa là đường trung tuyến vừa là đg phân giác

=> góc BAH = góc CAH

Xét tg ABH và ACH

AH chung

góc BAH = CAH

BC = AC ( vì tg ABC chung)

=> tg ABH = ACH ( c.g.c)

đại tỷ moon
8 tháng 4 2019 lúc 21:47

b. theo a, ta có: tg ABH = tg ACH (cgc)

=> góc ABH = góc ACH

Mà theo gt góc ABC = góc ACB => HBC = HCB

=> tg BHC cân tại H

đại tỷ moon
8 tháng 4 2019 lúc 21:51

c. Vì AK là đg trung tuyến của tg ABC 

=> BK = KC = BC / 2 = 6/3 = 2

Vậy BK = 2 cm

Xét tg  ABK

Theo định lí Py- ta- go ta có:

AK ^ 2 + BK ^ 2 = AB ^ 2

hay AK^2 + 2^2 = 5^2

AK^2 + 4 = 25

AK^2 = 25- 4

AK^2= 21

=> AK = căn 21

Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 13:33

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

\(\widehat{BAH}=\widehat{EAH}\)

Do đó: ΔAHB=ΔAHE

b:

Ta có: ΔAHB=ΔAHE

=>AB=AE

Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE

=>ΔDBE cân tại D

c: Xét ΔBDK và ΔEDC có

DB=DE

\(\widehat{BDK}=\widehat{EDC}\)

DK=DC

Do đó: ΔBDK=ΔEDC

=>\(\widehat{KBD}=\widehat{CED}\)

Ta có: ΔBAD=ΔEAD

=>\(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{KBD}\)

\(=\widehat{AED}+\widehat{CED}\)

\(=180^0\)

=>A,B,K thẳng hàng

d: Ta có: ΔDBK=ΔDEC

=>BK=EC

Xét ΔADC có \(\dfrac{AB}{BK}=\dfrac{AE}{EC}\)

nên BE//KC