Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Khánh Duyên
Xem chi tiết

TL

Giá trị của biểu thức lớn nhất khi mẫu số nhỏ nhất.

Ta có x2 + 4x + 2013 = x2 + 4x + 4 + 2009 = (x + 2)2 + 2009 >= 2009.

Biểu thức trên nhỏ nhất sẽ = 2009 khi (x + 2)2 = 0. Suy ra x = -2.

Vậy GTLN = 2012/2009.

Khách vãng lai đã xóa
Bùi Hoàng Linh Chi
Xem chi tiết
 Mashiro Shiina
8 tháng 7 2017 lúc 8:13

\(P=\dfrac{2012}{x^2+4x+2013}\)

\(P_{MAX}\Rightarrow x^2+4x+2013_{MIN}\)

\(\Rightarrow x^2+4x+2013=1\)

\(P_{MIN}=\dfrac{2012}{1}=2012\)

\(Q=\dfrac{a^{2012}+2013}{a^{2012}+2011}\)

\(Q=\dfrac{a^{2012}+2011+2}{a^{2012}+2011}=\dfrac{a^{2012}+2011}{a^{2012}+2011}+\dfrac{2}{a^{2012}+2011}\)

\(Q=1+\dfrac{2}{a^{2012}+2011}\)

\(a^{2012}\ge0\)

\(Q_{MAX}\Rightarrow a^{2012}_{MIN}=0\)

\(\Rightarrow Q_{MAX}=1+\dfrac{2}{2011}=\dfrac{2013}{2011}\)

Lightning Farron
8 tháng 7 2017 lúc 8:16

a)\(P=\dfrac{2012}{x^2+4x+2013}\)

Ta thấy: \(x^2+4x+2013=x^2+4x+4+2009\)

\(=\left(x+2\right)^2+2009\ge2009\)

\(\Rightarrow\dfrac{1}{\left(x+2\right)^2+2009}\le\dfrac{1}{2009}\)

\(\Rightarrow P=\dfrac{2012}{\left(x+2\right)^2+2009}\le\dfrac{2012}{2009}\)

Xảy ra khi \(x=-2\)

Nguyễn Viết Dũng
8 tháng 12 2019 lúc 20:24
https://i.imgur.com/yHgKbPv.jpg
Khách vãng lai đã xóa
Giúp mình với nha
Xem chi tiết
Giúp mình với nha
Xem chi tiết
DUY ANH Ngo
4 tháng 4 2017 lúc 12:48

\(x^2+4x+2013=x^2+4x+4+2009=\left(x+2\right)^2+2009\ge2009\)

\(\Rightarrow P\le\frac{2012}{2009}\)

 \(\frac{a^{2012}+2011}{a^{2012}+2011}+\frac{3}{a^{2012}+2011}=1+\frac{3}{a^{2012}+2011}\\ Qmax\Leftrightarrow a^{2012}min\Leftrightarrow a=0\)

Thay vào là ra

Trần Thị Diệu My
4 tháng 4 2017 lúc 5:09

P lớn nhất bằng 2013

Q lớn nhất bằng 2013/2011 bạn nhé!~

Giúp mình với nha
4 tháng 4 2017 lúc 8:24

cách giải với bạn

marivan2016
Xem chi tiết
Freya
4 tháng 1 2017 lúc 20:14

em mới học có lớp 6 thôi à

nguyen thua tuan
17 tháng 3 2017 lúc 21:05

P lớn nhất bằng 2013

Q lớn nhất bằng 2013/2011

Vũ Thanh Tùng
6 tháng 4 2017 lúc 6:13

P lớn nhất =2013       Q lớn nhất = 2013/2011

Đặng Quốc Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 10 2021 lúc 22:14

a: \(A=-4x^2+4x-1\)

\(=-\left(4x^2-4x+1\right)\)

\(=-\left(2x-1\right)^2\le0\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

b: \(B=-x^2+5x\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Lấp La Lấp Lánh
10 tháng 10 2021 lúc 22:15

a) \(A=-4x^2+4x-1=-\left(4x^2-4x+1\right)\)

\(=-\left(2x-1\right)^2\le0\)

\(maxA=0\Leftrightarrow x=\dfrac{1}{2}\)

b) \(B=-x^2+5x=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

\(maxB=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

c) \(C=-3x^2-9x+6=-3\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{51}{4}\)

\(=-3\left(x+\dfrac{3}{2}\right)^2+\dfrac{51}{4}\le\dfrac{51}{4}\)

\(maxC=\dfrac{51}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

Giúp mình với nha
Xem chi tiết
Đinh Ngọc Hân
5 tháng 4 2017 lúc 22:06

Mình mới nghĩ được câu b thôi

\(Q=\frac{a^{2012}+2013}{a^{2012}+2011}=\frac{a^{2012}+2011+2}{a^{2012}+2011}=1+\frac{2}{a^{2012}+2011}\)

Để Q lớn nhất thì \(a^{2012}+2011\) phải là nhỏ nhất

Vì \(a^{2012}\ge0\)\(\Rightarrow a^{2012}\ge2011\)

\(\Rightarrow\) \(a^{2012}+2011\) nhỏ nhất khi bằng 2011

Vậy Q đạt giá trị lớn nhất khi:

Max Q = \(1+\frac{2}{2011}=\frac{2013}{2011}\)

ngonhuminh
6 tháng 4 2017 lúc 2:02

HD

\(\frac{1}{P}=.....\)

tran bao trung
Xem chi tiết
Nguyễn Công Thành
27 tháng 3 2019 lúc 21:50

Giá trị của biểu thức lớn nhất khi mẫu số nhỏ nhất.

Ta có x2 + 4x + 2013 = x2 + 4x + 4 + 2009 = (x + 2)2 + 2009 >= 2009.

Biểu thức trên nhỏ nhất sẽ = 2009 khi (x + 2)2 = 0. Suy ra x = -2.

Vậy GTLN = 2012/2009.

zZz Cool Kid_new zZz
27 tháng 3 2019 lúc 21:51

Ta có:\(x^2+4x+2013=\left(x^2+2\cdot2x+2^2\right)+2009=\left(x+2\right)^2+2009\)

\(\Rightarrow HUY=\frac{2012}{x^2+4x+2013}=\frac{2012}{\left(x+2\right)^2+2009}\)

Để HUY lớn nhất thì  \(\left(x+2\right)^2+2009\) nhỏ nhất.

Do \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2009\ge2009\)

\(\Rightarrow HUY\ge\frac{2012}{2009}\)

Dấu "=" xảy ra khi và chỉ khi:\(\left(x+2\right)^2=0\Leftrightarrow x=-2\).

Vậy \(HUY_{max}=\frac{2012}{2009}\Leftrightarrow x=-2\)

By zZz Phan Gia Huy zZz.

nguyễn linh chi
Xem chi tiết
Ngô Văn Tuyên
5 tháng 1 2016 lúc 10:22

\(A=\frac{2012}{x^2+4x+2013}=\frac{2012}{x^2+4x+4+2009}=\frac{2012}{\left(x+2\right)^2+2009}\)

ta thấy biểu thức A đạt giá trị lớn nhất khi mẫu phân số nhỏ nhất

(x+2)2+2009 nhỏ nhất là bằng 2009 vì (x+2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0

Vậy biểu thức A lớn nhất bằng 2012/2009 khi x+2 = 0  <=> x = -2

\(B=\frac{a^{2012}+2013}{a^{2012}+2011}=\frac{a^{2012}+2011+2}{a^{2012}+2011}=\frac{a^{2012}+2011}{a^{2012}+2011}+\frac{2}{a^{2012}+2011}=1+\frac{2}{a^{2012}+2011}\)

B lớn nhất khi \(\frac{2}{a^{2012}+2011}\) lớn nhất , <=> a2012+2011 nhỏ nhất,  a2012+2011 nhỏ nhất = 2011 khi a = 0

Vậy B lớn nhất là: \(B=1+\frac{2}{2011}=\frac{2013}{2011}\) khi a = 0