Chứng minh nếu a;m thuộc N;a>1, m> 1 thì ucln(a^m - 1 /a−1;a-1)=ucln(m;a-1)
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
ta có: \(\frac{a^2+c^2}{b^2+a^2}\)do \(a^2=bc\)
=>\(\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
vậy \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
\(\text{Ta có : }\frac{a^2+c^2}{b^2+a^2}\text{ do }a^2=bc\)
\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
\(\text{Vậy }\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
chứng minh rằng nếu (a,30)=1 thì a4+59 chia hết cho 60
Chứng minh rằng nếu (a,42)=1 thì a6 đồng dư 1(mod 168)
1. cho a,b,c,d thuộc Z và b,d > 0
a. nếu a/b >c/d , chứng minh ad > cd
b . nếu ad >bc , chứng minh a/b > c/d
Bài 1: Cho ABC cân tại A kẻ AH ⊥ BC (HBC)
a) Chứng minh: ∠ABH = ∠ABH suy ra AH là tia phân giác của ∠BAC
b) Kẻ HD ⊥ AB (D ∈ AB), HE ⊥ AC (E ∈ AC). Chứng minh ∠HDE cân.
c) Nếu cho AB = 29 cm, AH = 20 cm. Tính độ dài cạnh AB?
d) Chứng minh BC // DE.
e) Nếu cho ∠BAC = 1200 thì △HDE trở thành tam giác gì? Vì sao?
Bài 2: Cho tam giác ABC vuông tại A, có B = 60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
1/ Chứng minh: △ABD = △EBD.
2/ Chứng minh: △ABE là tam giác đều.
3/ Tính độ dài cạnh BC.
Bài 3: Cho tam giác ABC có AB = AC =10cm, BC = 12cm. Vẽ AH vuông góc BC tại H.
a) Chứng minh: △ABC cân.
b) Chứng minh △AHB = △AHC, từ đó chứng minh AH là tia phân giác của góc A.
c) Từ H vẽ HM ⊥ AB (M ∈ AB) và kẻ HN ⊥ AC (N ∈ AC).
Chứng minh : △BHM =△HCN
d) Tính độ dài AH.
e) Từ B kẻ Bx ⊥ AB, từ C kẻ Cy ⊥ AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho góc nhọn xOy. Gọi I là một điểm thuộc tia phân giác của góc xOy. Kẻ IA vuông góc với Ox (điểm A thuộc tia Ox) và IB vuông góc với Oy (điểm B thuộc tia Oy)
a) Chứng minh △OAI = △OBI, IA = IB.
b) Cho biết OI = 10cm, AI = 6cm. Tính OA.
c) Gọi K là giao điểm của BI và Ox và M là giao điểm của AI với Oy. So sánh AK và BM?
d) Gọi C là giao điểm của OI và MK. Chứng minh OC vuông góc với MK
Bài 5: Cho tam giác ABC cân ở A. Trên cạnh AB lấy điểm M, trên tia đối tia CA lấy điểm N sao cho BM = CN. Gọi K là trung điểm MN. Chứng minh ba điểm B, K, C thẳng hàng
Héo mì pờ li mọi người ơi!!!!!!!!!!!!!!!!!!!!!! TvT - TvT - TvT - TvT - TvT - TvT - TvT
Bài 1:
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔHDB=ΔHEC
Suy ra; HD=HE
hay ΔHDE cân tại H
d: Xét ΔABC có BD/AB=CE/AC
nên DE//BC
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
cho a,b,c là các số thực thỏa man: a+\(\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a\backslash}\).
a) chứng minh nếu a,b,c đôi một khác nhau thì a2b2c2=1
b) chứng minh rằng nếu a,b,c>0 thì a=b=c
Chứng minh nếu \(a^3+b^3+c^3=3abc\) và a, b, c > 0. Chứng minh a = b = c
Lời giải:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow (a+b+c)^3-3(a+b)(b+c)(c+a)=3abc\)
\(\Leftrightarrow (a+b+c)^3-3[(a+b+c)(ab+bc+ac)-abc]=3abc\)
\(\Leftrightarrow (a+b+c)^3-3(a+b+c)(ab+bc+ac)=0\)
\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)
Vì \(a,b,c>0\Rightarrow a+b+c>0\)
Do đó \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow 2(a^2+b^2+c^2-ab-bc-ac)=0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)
Ta thấy \((a-b^2;(b-c)^2;(c-a)^2\geq 0\), do đó điều trên xảy ra khi mà:
\(\left\{\begin{matrix}
(a-b)^2=0\\
(b-c)^2=0\\
(c-a)^2=0\end{matrix}\right.\Leftrightarrow a=b=c\)
Ta có đpcm.
\(\text{Ta có }:a^3+b^3+c^3=3abc\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b+c\right)^2=0\)
\(Do\left(a-b\right)^2\ge0\forall x\\ \left(a-c\right)^2\ge0\forall x\\ \left(b-c\right)^2\ge0\forall x\\ \Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b+c\right)^2\ge0\forall x\)
\(\text{Dấu "=" xảy ra khi: }\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\Leftrightarrow a=b=c\)
Vậy \(a=b=c\text{ }khi\text{ }a^3+b^3+c^3=3abc\)
Các cao nhân giúp mình với
Bài 1: Cho n > 3 và n ∈ N. Chứng minh nếu 2n = 10a + b với a; b ∈ N và 0 < b < 9 thì ab ⋮ 6
Bài 2: Cho các số nguyên dương thỏa mãn a2 + b2 = c2. Chứng minh rằng abc ⋮ 60
Bài 3: Chứng minh rằng nếu a + 1 và 2a + 1 đều là các số chính phương thì a ⋮ 24
Bài 4: Chứng minh rằng nếu a + 1 và 3a + 1 đều là các số chính phương thì a ⋮ 40
Bài 5: Cho 3 số nguyên dương thỏa mãn a3 + b3 + c3 ⋮ 14. Chứng minh rằng abc cũng ⋮ 14
Bài 6: Cho biểu thức S = n4 + 2n3 – 16n2 – 2n + 15. Tìm tất cả các giá trị nguyên của n để S ⋮ 16
a) Nếu \(A⋮m;\)\(A⋮n\)thì có suy ra được rằng \(A⋮m\cdot n\)không? Nếu có, hãy chứng minh. Nếu không, lấy ví dụ minh họa.
b) Nếu \(a\cdot b⋮c\)thì có suy ra được rằng \(a⋮c;\)\(b⋮c\)không? Nếu có, hãy chứng minh. Nếu không, lấy ví dụ minh họa.
a) Không thể. VD: 6 chia hết cho 3; 6 chia hết cho 6; 6 không chia hết cho 18
b)Không thể. VD: 3.4 chia hết cho 6; 3 ko chia hết cho 6; 4 ko chia hết cho 6