Cho tam giác ABC ,các trung tuyến BD, CE cắt nhau tại O.Gọi M,N theo thứ tự là trung điểm của OB,OC. Chứng minh rằng;
a) MN//DE
b) MN=DE
Tam giác ABC có ba đường trung tuyến cắt nhau tại O. Gọi P,Q, R theo thứ tự là trung điểm của các đoạn thẳng OA, OB, OC. Chứng minh rằng tam giác PQR đồng dạng với tam giác ABC
Trong △ OAB, ta có PQ là đường trung bình nên: PQ =1/2 AB (tính chất đường trung bình của tam giác)
Suy ra: (1)
Trong △ OAC, ta có PR là đường trung bình nên:
PR = 1/2 AC (tính chất đường trung bình của tam giác)
Suy ra: (2)
Trong △ OBC, ta có QR là đường trung bình nên
QR = 1/2 BC (tính chất đường trung bình của tam giác)
Suy ra:
Từ (1), (2) và (3) suy ra:
Vậy △ PQR đồng dạng △ ABC (c.c.c)
Tam giác ABC có ba đường trung tuyến cắt nhau tại O. Gọi P,Q,R theo thứ tự là trung điểm của OA,OB,OC. Chứng minh tam giác PQR~ tam giác ABC
Tam giac ABC có ba đường trung tuyến cắt nhau tại O. Gọi P,Q,R theo thứ tự là trung điểm của OA,OB,OC. Chứng minh tam giác PQR~tam giác ABC
-Xét △OAB có: P trung điểm OA, Q trung điểm OB (gt)
\(\Rightarrow\)PQ là đường trung bình của △OAB.
\(\Rightarrow\)PQ=\(\dfrac{1}{2}\)AB.
\(\Rightarrow\dfrac{PQ}{AB}=\dfrac{\dfrac{1}{2}AB}{AB}=\dfrac{1}{2}\)
-Xét △OAC có: P trung điểm OA, R trung điểm OC (gt)
\(\Rightarrow\)PR là đường trung bình của △OAC.
\(\Rightarrow\)PR=\(\dfrac{1}{2}\)AC.
\(\Rightarrow\dfrac{PR}{AC}=\dfrac{\dfrac{1}{2}AC}{AC}=\dfrac{1}{2}\)
-Xét △OBC có: R trung điểm OC, Q trung điểm OB (gt)
\(\Rightarrow\)RQ là đường trung bình của △OBC.
\(\Rightarrow\)RQ=\(\dfrac{1}{2}\)BC.
\(\Rightarrow\dfrac{RQ}{BC}=\dfrac{\dfrac{1}{2}BC}{BC}=\dfrac{1}{2}\)
-Xét △PQR và △ABC có: \(\dfrac{PQ}{AB}=\dfrac{PR}{AC}=\dfrac{QR}{BC}\left(=\dfrac{1}{2}\right)\)
\(\Rightarrow\)△PQR ∼ △ABC (c-c-c)
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE= IK.
* Trong ∆ ABC, ta có:
E là trung điểm của AB (gt)
D là trung điểm của AC (gt)
Nên ED là đường trung bình của ∆ ABC
⇒ ED//BC và ED = BC/2 (tính chất đường trung bình của tam giác) (l)
* Trong ∆ GBC, ta có:
I là trung điểm của BG (gt)
K là trúng điểm của CG (gt)
Nên IK là đường trung bình của ∆ GBC
⇒ IK // BC và IK = BC/2 (tỉnh chất đường trung bình của tam giác) (2)
Từ (l) và (2) suy ra: IK // DE, IK = DE.
Cho tam giác ABC,các đường trung tuyến BD và CE cắt nhau tại G.Gọi I,K theo thứ tự là trung điểm của GB,GC.Chứng minh rằng :DE//IK,DE=IK
Tam giác ABC có ba đường trung tuyến cắt nhau tại O. Gọi P, Q, R thứ tự là trung điểm của các đoạn thẳng OA, OB, OC
Chứng minh rằng tam giác PQR đồng dạng với tam giác ABC ?
cho tam giác ABC , các đường trung tuyến BD , CE .Gọi M ,N theo thứ tự là trung điểm BE , CD . gọi I ,k theo thứ tự là giao điểm của MN với BD , CE . Chứng minh rằng MI=IK=KN
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE=IK.
Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau tại G gọi I và K theo thứ tự là trung điểm của GB GC
a tứ giác BIKC lF hình gì ? Vì sao?
b tú giác EDKI là hình gì ? Vì sao?
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK ?
* Trong ΔABC, ta có:
E là trung điểm của AB (gt)
D là trung điểm của AC (gt)
Nên ED là đường trung bình của ΔABC
⇒ ED//BC và ED = BC/2 (tính chất đường trung bình của tam giác) (l)
* Trong ΔGBC, ta có:
I là trung điểm của BG (gt)
K là trúng điểm của CG (gt)
Nên IK là đường trung bình của ΔGBC⇒ IK // BC và IK = BC/2 (tỉnh chất đường trung bình của tam giác) (2)
Từ (l) và (2) suy ra: IK // DE, IK = DE.