1. Cho x + y = 1; \(x^2+y^2=13\). Tính \(x^3+y^3\)
2. Cho a+b+c+d=0. CMR: \(a^3+b^3+c^3+d^3=3\left(ac-bd\right)\left(b+d\right)\)
3. Cho x-y= -1; Tính GTBT: P = \(2\left(x^3-y^3\right)+3\left(x^2+y^2\right)\)
Cho x,y,z>0 và x+y+z=1 . Tìm MinP = ∑ \(\dfrac{1}{x+y+1}\)
Cho x,y,z>0 và x+y+z =1 . Tìm Min A = ∑ \(\dfrac{x}{y^2+x^2+1}\)
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Cho x,y nguyên ; x,y khác -1 thoả (x^4-1)/(y+1) + (y^4-1)/(x+1) là số nguyên .CMR x4y44-1 chia hết cho y+1
ý. Cho |x+1| = 6; |y - 1| = 14 với x, y thuoc Z. Tính x - y.
2. Cho x < y < 1 và |x - 1| - |y - 1| = 50. Tính x - y
|x+1| = 6
Trường hợp 1 : x + 1 = 6 => x = 5
Trường hợp 2 : x + 1 = -6 => x = -7
|y-1| = 14
Trường hợp 1 : y - 1 = 14 => y = 15
Trường hợp 2 : y - 1 = -14 => y = -13
1. Cho x2 +y2 =1. Tìm min A= (3-x) (3-y).
2. cho x,y >0, 2xy-4= x+y. Tìm min P=xy+ 1/ x2 +1/ y^2.
3.Cho x>=3, y>= 3. Tìm min A= 21*(x+1/y) +3*(y+1/x).
4. Cho x,y >0, x^2+ y^2= 1.Tìm min x+y+1/x+1/y.
5. Cho a,b>0, a+b+3ab=1. Tìm min A= 6ab/ (a+b) -a^2-b^2
1.Cho x^2+ 4x+1 = 0
Tính A= ( x + 1/x )^2 + (x^2 + 1/x^2 )^2 + ( x^3+ 1/x^3 )^2
2.Cho các số thực x, y khác 0 sao cho x+ 1/y và y+ 1/x là những số nguyên . CMR x^3y^3 + 1/x^3y^3 là số nguyên.
3.Cho x,y,z khác 0 tm x(y+z)^2+y(z+x)^2+z(x+y)^2=4xyz
cho x/y+z+1 = y/z+1+x = z/1+x+y = 1/x+y+z. CMR biểu thức sau có giá trị nguyên: A = x+y/z+1 = y+z/1+x = z+1/x+y = 1+x/y+z
Cho x*y*z=1 Tính giá trị biểu thức (1/x*y+x+1)+(1/Y*z+y+1)+(1/x*y*z+y*z+y)
Cho x,y,z thoa man x^3+y^3+z^3=1 va x((1/y)+(1/z))+y((1/z)+(1/x))+z((1/x)+(1/y))=-2 Tinh 1/x + 1/y + 1/z
Cho các số nguyên dương x, y thỏa mãn điều kiện x3 + 1/y+1 và y3+1/x+1 thuộc Z.Chứng minh rằng:
a)x3+1 chia hết cho y+1
b)x3y3- 1 chia hết cho y + 1
Chúng ta cần chứng minh các điều kiện sau cho các số nguyên dương \(x\) và \(y\) thỏa mãn \(x^{3} + 1\) chia hết cho \(y + 1\) và \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Bài toán phần a)Chứng minh rằng \(x^{3} + 1\) chia hết cho \(y + 1\).
Giải: Ta đã biết rằng \(x^{3} + 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} + 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể xem xét \(x^{3} + 1\) dưới dạng nhân tử:
\(x^{3} + 1 = \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right)\) chia hết cho \(y + 1\). Điều này có nghĩa là \(y + 1\) là ước của \(x^{3} + 1\), hay là:
\(y + 1 \mid \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Giả sử rằng \(x^{3} + 1\) chia hết cho \(y + 1\), thì sẽ có một số \(k\) sao cho:
\(x^{3} + 1 = k \left(\right. y + 1 \left.\right) ,\)
tức là \(k\) là một số nguyên. Như vậy, \(x^{3} + 1\) chia hết cho \(y + 1\), và bài toán đã được chứng minh cho phần a.
Bài toán phần b)Chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Giải: Ta cần chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} y^{3} - 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể biến đổi \(x^{3} y^{3} - 1\) theo công thức phân tích đa thức:
\(x^{3} y^{3} - 1 = \left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right)\) chia hết cho \(y + 1\).
Giả sử rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), ta có:
\(x^{3} y^{3} - 1 = m \left(\right. y + 1 \left.\right) ,\)
với một số nguyên \(m\), do đó \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Như vậy, ta đã chứng minh được rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), hoàn thành bài toán phần b.
Kết luận: Chúng ta đã chứng minh được rằng:
a) \(x^{3} + 1\) chia hết cho \(y + 1\),b) \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).cho x+y+z=2016 và 1/(x+y)+1/(y+z)+1/(x+z)=1/8
Tính P= x/(y+z)+y/(x+z)+z/(x+y)
ai tl mk sẽ tick cho