Cho hai đương tròn (O; R)và (O'R) cắt nhau tại A, B sao cho khoang cách giữa hai tâm lớn hơn R. Nối OA cắt đường tròn (o') tại C. Tia OO' cắt đường tròn tâm O' tại D. CMR cung CO'D= 3cung AOD
Cho đương tròn tâm O bán kính 2cm, A thuộc đường tròn tâm O vẽ đương tròn tâm O bàn kính 2cm
a Chứng tỏ rằng đương tròn tâm A bán kính 2cm đi qua O
b Đường tròn tâm A và đương tròn tâm O cắt nhau tại B và C. Chứng tỏ rằng ba điểm A, B, c không thẳng hàng
cho đường tròn ( o, r ) và điểm a cố định thuộc đường tròn . kẻ tia ax là tiếp tuyến của đường tròn ( o ) tại a . trên tia ax lấy điểm m cố định ( m không trùng a ) . đương thẳng d thay đổi đi qua m và không đi qua tâm o , cắt ( o ) tại hai điểm b và c ( b nằm giữa c và m ; abc < 90 độ ) . gọi i là trung điểm của bc .
1) chứng minh 4 điểm a , o , i , m cùng thuộc 1 đường tròn .
2) Vẽ đường kính AD của đường tròn (O). Gọi H là trực tâm tam giác ABC. CMR: H đối xứng với D qua I. TÍnh HA biết tâm O cách đường thẳng d là 2cm
1: Xét (O) có
OI là một phần đường kính
BC là dây
I là trung điểm của BC
Do đó: OI\(\perp\)BC
Xét tứ giác OAMI có
\(\widehat{OAM}+\widehat{OIM}=180^0\)
Do đó: OAMI là tứ giác nội tiếp
hay O,A,M,I thẳng hàng
cho đường tròn ( o, r ) và điểm a cố định thuộc đường tròn . kẻ tia ax là tiếp tuyến của đường tròn ( o ) tại a . trên tia ax lấy điểm m cố định ( m không trùng a ) . đương thẳng d thay đổi đi qua m và không đi qua tâm o , cắt ( o ) tại hai điểm b và c ( b nằm giữa c và m ; abc < 90 độ ) . gọi i là trung điểm của bc .
1) chứng minh 4 điểm a , o , i , m cùng thuộc 1 đường tròn .
2) Vẽ đường kính AD của đường tròn (O). Gọi H là trực tâm tam giác ABC. CMR: H đối xứng với D qua I. TÍnh HA biết tâm O cách đường thẳng d là 2cm
Em chưa học tứ giác nội tiếp nên có thể giải cho em cách khác được không ạ?
cho đương tròn (O,R)và một điểm A nằm ngoài đường tròn (O,R).Từ A vẽ hai điểm tiếp tuyến AB,AC của (O,R) ( B,C là tiếp điểm).Từ B vẽ đường kính BD của (O ,R), đường thẳng AD cắt (O,R) tại E (khác D) . CM 4 điểm A,B,C,O cùng thuộc 1 đường tròn
Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Cho tứ giác ABCD nội tiếp nửa đường tròn đường kính AD, hai đương chéo AC và BD cắt nhau tại O. Vẽ OH vuông góc AD.
Chứng minh rằng O là tâm đường tròn nội tiếp của tam giac BCH.
Cho đường tròn (O;R), đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia đối NM lấy điểm C nằm ngoài đường tròn (O;R) sao cho đoạn thẳng AC cắt đương tròn tại k khác A. Hai day MN và BK cắt nhau ở E. Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F.
a) Chứng minh tứ giác AHEK nội tiếp.
b) Chứng minh tam giác NFK cân và EM. NC = EN. CM.
c) Giả sử KE = KC. Chứng minh OK// MN và KM2 + KN2 = 4R2
Hình tròn tâm O có chu vi 7,536 m .Hai đương kính AB và CD vuông góc với nhau và chia hình tròn tâm O thành bốn phần bằng nhau .Hãy tính chu vi của 1/4 hình tròn tâm O
Chu vi hình quạt CBO là :
7,536 : 4 x 1 =1,884 (m)
Đáp số : 1,884 m
Cho tam giác ABC vuông ở đỉnh A . trên cạnh AC lấy điểm M ( khác với điểm A và C) . vẽ đường tròn (O) đường kính MC. gọi N là giao điểm thứ hai của cạnh BC với đương tròn (O) . nối BM và kéo dài cắt đường tròn (O) tại điểm thứ hai P.
Cmr: tam giác ABP đồng dạng với tam giác MNP
Cho đường tròn (O,R) và đường thẳng d không đi qua O, cắt đường tròn tại hai điểm A và B.Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC,MD với đường tròn (C,D là tiếp điểm).Gọi H là trung điểm của AB.
a)chứng minh 4 điểm M,D,O,H cùng thuộc 1 đường tròn.
b)đoạn thẳng OM cắt đường tròn tại I.chứng minh I là tâm đương tròn nội tiếp tam giác MCD
a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)
theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)
=> M,D,O,H cùng nằm trên 1đường tròn
b) Theo tính chất tiếp tuyến ta có
MC=MD=> tam giác MDC cân tại M
=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :
\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)
=> CI là phân giác của góc MCD .
zậy I là tâm đường tròn nội tiếp tam giác MCD