Cho tam giác ABC vuông tại A phân giác BE .Tia phân giác của góc A cắt BE tại M . Biết BE=5cm;ME= 10 cm .Tính diện tích tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác góc HAB cắt tia phân giác góc B tại E. Tia phân giác góc HAC cắt tia phân giác góc C tại F.
a)CMR: BE vuông góc AF
b) BE cắt CF tại K. CMR: AK vuông góc EF.
giúp tui vs
Cho tam giác ABC vuông tại A tia phân giác của góc ABC cắt AC tại D lấy E trên cạnh BC sao cho BE = AB a) chứng minh tam giác ABD = tam giác EBD b) tia ED cắt BA tại M. chứng minh EC = AM c) Nối AE. chứng minh : tam giác AEC = tam giác EAM
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
=>DE vuông góc BC
b: Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADM=góc EDC
=>ΔDAM=ΔDEC
=>AM=EC
c: Xét ΔAEC và ΔEAM có
AE chung
EC=AM
AC=EM
=>ΔAEC=ΔEAM
Cho tam giác ABC. Vẽ phân giác góc ngoài tại A của tam giác ABC. Từ B kẻ d//AB, d cắt AC tại E.
a) Chứng minh : d cắt AC tại E.
b) CMR :góc ABE = góc AEB
c)Vẽ m qua A và vuông góc vói AD, cắt BE tại F. CMR: AF là tia phân giác của góc EAB và m vuông góc với EB
cho tam giác ABC có AH vuông góc với BC và góc BAH=2 lần góc C.Tia phân giác của B cắt AC tại E
a,Tia phân giác góc BAH cắt BE tại I.C/m tam giác AIE vuông cân
b,C/m HE là tia phân giác của góc AHC
các bạn cố gắng giải nhanh giùm mình nhé mình đang cần gấp lắm
Cho tam giác ABC có AB > AC. Từ trung điểm M của Bc vẽ một đường thẳng vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lần lượt tại E và F. Chứng minh rằng:
a) BE = CF
b) AB + AC AB - AC
AE = ______, BE = ______
2 2
c) ACB - B
Góc BME= ______
2
Mọi người giúp mình với ạ, mình đang cần gấp.
Cho tam giác ABC vuông tại A. Biết AB = 3cm, AC=4cm. Trên tia BA lấy điểm K sao cho BK= BC. Vẽ KH vuông goác với BC tại H và cắt AH tại E
a) Tính BC
b)Chứng minh tam giác ABC= tam giác HBK
c) Chứng minh BE là tia phân giác của góc KBC và BE vuông góc với KC
d) Chứng minh AE bé hơn EC
a: BC=5cm
b: XétΔBHK vuông tại H và ΔBAC vuông tại A có
BK=BC
góc HBK chung
Do đó: ΔBHK=ΔBAC
Suy ra: BH=BA
c: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
BA=BH
Do đó: ΔABE=ΔHBE
Suy ra: \(\widehat{ABE}=\widehat{HBE}\)
hay BE là phân giác của góc KBC
Ta có: ΔBKC cân tại B
mà BE là phân giác
nên BE là đường cao
a. Xét tam giác ABC theo định lý PY - ta - go ta có :
AB2 + AC2 = BC2
=> 32 + 42 = BC2
=> 9 + 16 = BC2
=> 25 = BC2
=> BC = 5cm
cho tam giác ABC vuông tại A(AC>AB).Kẻ tia phân giác của góc B cắt cạnh AC tại E từ C hạ đoạn thẳng CD vuông góc với tia phân giác BE (D thuộc BE).Chứng minh rằng:
a, góc AEB=góc DCB
b,EC.AE=ED.BE
a: Xét ΔABE vuông tại A và ΔDBC vuông tại D có
góc ABE=góc DBC
=>ΔABE đồng dạng với ΔDBC
=>góc AEB=góc DCB
b: Xét ΔEAB vuông tại A và ΔEDC vuông tại D có
góc AEB=góc DEC
=>ΔEAB đồng dạng với ΔEDC
=>EA/ED=EB/EC
=>EA*EC=ED*EB
cho tam giác ABC vuông tại A,góc ABC = 60 độ. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC a) Chứng minh tam giác ABE = tam giác HBE b) Qua H vẽ HK song song BE (K thuộc AC) Chứng minh tam giác EHK đều c) HE cắt BA tại M, MC cắt BE tại N. Chứng minh NM=NC.
Bạn tự vẽ hình nha.
a,Xét tg ABE và tg HBE:
^BAE=^BHE=90*
^ABE=^HBE(BE là pg)
BE chung
=>tg ABE= tg HBE(ch-gn)
b,+,tg ABC có:^BAC=90*,^ABC=60*
=>^C=30*
+,tg BHE có: ^BHE=90*,^EBH=30*(^EHB=1/2ABC)
=>^HEB=60*
Mà HK // BE
=>^HBE=^EHK=60*(slt)
+, tg CHE có:^EHC=90*,^C=30*
=>HEC=60*
+,tg HEK có:
^EHK=60*,^HEC(^HEK)=60*
=>TG HEK đều(dhnb)
Phần c mik chỉ ghi các bước thôi còn bạn tự chình bày nhé.
c, +,CM:tg AEM=tg HEC(cgv-gnk)
=>AM=HC
+,CM:BM=BC
+,CM:tg BMI=tgBCI(cgc)
=>NM=NC
Xong r nha. Chúc bạn học tốt.
cho tam giác abc vuông tại a . tia phân giác của góc abc cắt ac tại d . lấy e trên cạnh bc sao cho be =ab
a, chứng minh tam giác abd= tam giác ebd
b, tại tia ed cắt ba tại m chứng minh ec = am
c, nối ae , chứng minh góc aec = góc eam
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)
mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)
và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)
nên \(\widehat{AEC}=\widehat{EAM}\)