cho tam giác ABC vuông tại A đường cao AH. từ H kẻ HD vuông AB; HE vuông AC ( D∈AB;E∈AC)
CM:\(\sqrt{BD\cdot DH}+\sqrt{CE\cdot EH}=\sqrt{AH\cdot BC}\)
cho tam giác ABC vuông tại A, có đường cao AH; BH = 4cm, CH= 9cm. Từ H kẻ HD vuông góc AB, HE vuông góc AC.
a. Tính AH
cho tam giác ABC vuông tại A có AB =15cm, AC = 20cm.Từ A vẽ đường cao AH a) Tính BC,AH,CH,BH b) Từ H kẻ HD vuông góc với AC.Chứng minh tam giác ABC dấu đồng dạng tam giác DHC c) Tính Sdhc =?
a: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12cm
BH=15^2/25=9cm
CH=25-9=16cm
b: Xet ΔABC vuông tại A và ΔDHC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDHC
c: \(\dfrac{S_{ABC}}{S_{DHC}}=\left(\dfrac{BC}{HC}\right)^2=\left(\dfrac{25}{16}\right)^2\)
=>\(S_{DHC}=150:\dfrac{625}{256}=61.44\left(cm^2\right)\)
cho tam giác abc vuông tại a đường cao ah . Từ h kẻ hd và he lần lượt vuông góc với ab,ac. giả sử diện tích tam giác abc=2 diện tích tam giác adhe chứng minh rằng tam giác abc vuông cân
cho tam giác ABC vuông tại A (AB < AC) . Đường cao AH. từ H kẻ HD vuông góc với AB, HE vuông góc với AC. tia ED cắt tia BC tại N. chứng minh NB.NE = ND.NC
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Từ H kẻ HD vuông góc với AC, HE vuông góc với AB. Gọi MN là trung điểm của HB,HC. Cm DEMN là hình thang vuông
Tại sao phải chứng minh khi nhìn vào đã biết
cho tam giác ABC vuông tại a kẻ đường cao AH. Từ H kẻ HD vuông AC, HE vuông AB. Gọi M,N lần lượt là trung điểm của các đoạn thẳng HB,HC. Chứng minh tứ giác DEMN là hình thang vuông
Ta có: góc HEA = góc EAD = góc ADH (=900)
=> tứ giác AEHD là hình chữ nhật
=> ED = AH.
Gọi T là giao điểm của ED và AH, ta có: ET = TH = TD = AT
Trong tam giác vuông BEH có EM là đường trung tuyến ứng với cạnh huyền BH => EM = MH (1)
Xét tam giác MET và tam giác MHT có:
ME = MH(từ 1); MT chung; ET = TH (chứng minh trên)
=> tam giác MET = tam giác MHT (c-c-c)
=> góc MET= góc MHT =900 (2 góc tương ứng) (2)
Tường tự ta có tam giác HTN = tam giác DTN (c-c-c)
=> góc THN = góc TDN = 900 (2 góc tương ứng) (3)
Từ (2)(3) => EM song song với DN
(vì cùng vuông góc với DE " từ vuông góc đến song song")
=> tứ giác EMND là hình thang và có góc MED = góc EDN (=900)
=> hình thang EMND là hình thang vuông
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Từ H kẻ HD vuông góc AC, HE vuông góc AB. Gọi M,N lần lượt là trung điểm của HB, HC. Cm: tứ giác DEMN là hình thang vuông
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//KH
c: Ta có: AC//HK
AC//HM
HK,HM có điểm chung là H
Do đó: K,H,M thẳng hàng
Ta có: AMHN là hình chữ nhật
=>\(\widehat{NAH}=\widehat{NMH}\)
mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)
nên \(\widehat{NMH}=\widehat{CKH}\)
Xét tứ giác MNCK có CN//MK
nên MNCK là hình thang
Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)
nên MNCK là hình thang cân
d: Ta có: AMHN là hình chữ nhật
=>AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Xét ΔCAH có
CO,AI là các đường trung tuyến
CO cắt AI tại D
Do đó: D là trọng tâm của ΔCAH
=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)
=>AK=3AD
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^
Sao bổ sung hình vẽ không được vậy nè
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Từ H kẻ HD vuông góc với AC, HE vuông góc với AB. Gọi M, N lần lượt là trung điểm của HB, HC. Chứng minh: DEMN là hình thang vuông
Gọi gđ của ED và HA là O . Ta có:
tam giác MEH cân => góc HEM=MHE
tam giác OEH cân => góc OEH=OHE
mà góc OHE+MHE=90 độ
=> góc HEM+OEH=90 độ
=> EM vuông góc với ED
DN vuông góc với ED => DEMN là hình thang vuông
@Mai Anh : chép mạng nhớ ghi nguồn nhé :>
@Mai Anh : Đã nhắc cho rồi thì lấy đó mà làm bài học nhé cậu (: , chứ đừng đi tk sai cho tớ như vậy (: