Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đức nguyễn
Xem chi tiết
Nghĩa Monster
Xem chi tiết
Kiyotaka Ayanokoji
11 tháng 7 2020 lúc 21:37

Trả lời: 

Phương trình hoành độ giao điểm (P) và (d) ta có:

\(-x^2=2x+m-1\)

\(\Leftrightarrow x^2+2x+m-1=0\)(1)

Ta có: \(\Delta=2^2-4.1.\left(m-1\right)\)

              \(=4-4m+4\)

               \(=8-4m\)

Để phương trình (1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

                                                                \(\Leftrightarrow8-4m>0\)

                                                                \(\Leftrightarrow4m< 8\)

                                                                 \(\Leftrightarrow m< 2\)

\(\Rightarrow\)Phương trình (1) có 2 nghiệm phân biệt 

\(\Rightarrow\)(d) cắt (P) tại 2 diểm phân biệt \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

Áp dụng Vi-ét \(\hept{\begin{cases}x_1+x_2=-2\left(1\right)\\x_1.x_2=m-1\left(2\right)\end{cases}}\)

Ta có \(y_1=-x_1^2\)\(y_2=-x_2^2\)

Theo đề bài:

\(x_1.y_1-x_2.y_2-x_1.x_2=4\)

\(\Leftrightarrow x_1.\left(-x_1^2\right)-x_2.\left(-x_2^2\right)-x_1.x_2=4\)

\(\Leftrightarrow-x_1^3+x_2^3-x_1.x_2=4\)

\(\Leftrightarrow-\left(x_1^3-x_2^3\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(x_1^2+x_1.x_2+x_2^2\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-2x_1.x_2+x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(x_1+x_2\right)^2-x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(-2\right)^2-m+1\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(4-m+1\right)=4+m-1\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(3-m\right)=m+3\)

\(\Leftrightarrow-\left(x_1-x_2\right)=\frac{m+3}{3-m}\)

\(\Leftrightarrow x_1-x_2=\frac{m+3}{m-3}\)(3)

Từ (1) (3) ta có: \(\hept{\begin{cases}x_1+x_2=-2\\x_1-x_2=\frac{m+3}{m-3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x_1=-2+\frac{m+3}{m-3}=\frac{9-m}{m-3}=-\left(m+3\right)\\x_1+x_2=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{-\left(m+3\right)}{2}\\x_2=\frac{m-1}{2}\end{cases}}\)

Thay x1, x2 vào (2) ta có

\(x_1.x_2=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}.\frac{m-1}{2}=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}=2\)

\(\Leftrightarrow-\left(m+3\right)=4\)

\(\Leftrightarrow m+3=-4\)

\(\Leftrightarrow m=-7\)(TM)

Vậy \(m=-7\) thì thỏa mãn bài toán 

Khách vãng lai đã xóa
Nguyễn Thị Yến Vi
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2023 lúc 22:12

PTHĐGĐ là:

x^2-(2m+1)x+2m=0

Δ=(2m+1)^2-4*2m

=4m^2+4m+1-8m=(2m-1)^2

Để (P) cắt (d) tại hai điểm phân biệt thì 2m-1<>0

=>m<>1/2

y1+y2-x1x2=1

=>(x1+x2)^2-3x1x2=1

=>(2m+1)^2-3*2m=1

=>4m^2+4m+1-6m-1=0

=>4m^2-2m=0

=>m=0 hoặc m=1/2(loại)

Kdvlhuuui
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 1:01

a: PTHĐGĐ là:

x^2-2x-|m|-1=0

a*c=-|m|-1<0

=>(d)luôn cắt (P) tại hai điểm phân biệt

b: Bạn bổ sung lại đề đi bạn

Phạm Kim Bách
Xem chi tiết
Hoàng Minh Quân
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Huy Tú
8 tháng 5 2022 lúc 9:43

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m-2\right)x-3=0\)

\(\Delta=\left(m-2\right)^2-4\left(-3\right)=\left(m-2\right)^2+12>0\)

Vậy (P) cắt (d) tại 2 điểm pb 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m-2\left(1\right)\\x_1x_2=-3\left(2\right)\end{matrix}\right.\)

Vì \(x_1x_2=-3< 0\)nên pt có 2 nghiệm trái dấu 

đk : \(\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)

\(-x_1=3x_2\Leftrightarrow x_1+3x_2=0\)(3) 

Từ (1) ; (3) \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1+3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_2=-\left(m-2\right)\\x_1=m-2-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-\left(m-2\right)}{2}\\x_1=\dfrac{2m-4+m-2}{2}=\dfrac{3m-6}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(\dfrac{-3\left(m-2\right)^2}{4}=-3\Leftrightarrow\left(m-2\right)^2=4\Leftrightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)

 

 

Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 9:05

PTHĐGĐ là:

x^2-(m-2)x-3=0

a*c<0

=>(P) luôn cắt (d) tại hai điểm pb

Theo đề, ta có: 3x2=-x1 và x1+x2=m-2

=>x1+3x2=0 và x1+x2=m-2

=>2x2=-m+2 và 3x2=-x1

=>x2=-1/2m+1 và x1=-3x2=3/2m-3

x1x2=-3

=>-1/2(m-2)*3/2(m-2)=-3

=>3/4(m-2)^2=3

=>(m-2)^2=4

=>m=4 hoặc m=0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 11 2017 lúc 12:26

Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1

↔ x 2 − (m + 2)x + m + 1 = 0 (1)

(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0

↔ m < −1

Vậy m < −1

Đáp án: A

dương
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 17:22

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=\left(m+2\right)x-2m\Leftrightarrow x^2-\left(m+2\right)x+2m=0\) (1)

(d) cắt (P) tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=\left(m+2\right)^2-8m>0\)

\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2+\left(m+2\right)x_2=12\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2+\left(m+2\right)x_2=12\)

\(\Leftrightarrow\left(m+2\right)x_1-2m+\left(m+2\right)x_2=12\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m-12=0\)

\(\Leftrightarrow\left(m+2\right)^2-2m-12=0\)

\(\Leftrightarrow m^2+2m-8=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=2\left(loại\right)\end{matrix}\right.\)