Cho (P) y=-x2 và (d)y=2x+m-3
b) Tìm điều kiện tham số m để (d) cắt (P) tại 2 điểm phân biệt M(x1,y1);N(x1;y2) thỏa mãn (y1+2x2+m)(y2+2x1-3m)=-51
Cho ( P ) y = x2 và đường thẳng d y = ( 2m - 1) x - m + 2
a, Chứng minh rằng với moijm đường thẳng d luôn cắt ( P ) tại 2 điểm phân biệt
b, Tìm các ía trị của m đề dường thẳng d luôn cắt ( P ) tại hai điểm phân biệt A ( x1 ; y1 ) và B ( x2 ; y2 ) thỏa mãn x1y1 + x2y2 =0
cho HS y = 1/2 x^2 ( P )
a ) vẽ ( P )
b ) CM : đường thẳng ( d ) : y= mx-m+1 luôn cắt ( P ) tại 2 điểm phân biệt A (x1;y1) , B (x2;y2) . Tính y1+y2 theo m .
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):\(y=2x-m+1\) (với m là tham số) và parabol (P): .
a) Tìm m để đường thẳng (d) đi qua điểm A (–1; 3).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho \(x_1x_2\left(y_1+y_2\right)+6=0\) .
Cho hai hàm số : (P) y = \(x^2\) và (d) y = 2mx + 2m +1 với m là tham số
Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ x1,x2 sao cho
\(\sqrt{x1+x2}\) + \(\sqrt{3+x1.x2}\) = 2m + 1
Cho (P) y=\(x^2\) và (d) y= 3x + \(m^2\)-2
a) Chứng minh: (d) luôn cắt (P) tại hai điểm phân biệt
b) Gọi x1 và x2 là hoành độ giao điểm của (d) và (P) .Tìm m để |x1| + 2|x2|= 3
Cho parabol (p) y=2x^2 và đường thẳng (d) y=3mx+1-m^2 (m là tham số) a. Tìm m để (d) đi qua A (-1; 9) b. Tìm m để (d) cắt (p) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn x1+x2 = 2x1×x2
Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng d: y=2x+|m|+ 1 ( m là tham số ). a) Chứng minh đường thẳng ở luôn cắt (P) tại 2 điểm phân biệt. b) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1 x2
Cho (P):y=x2 và (d):y=2x+m-1 (m là tham số)
b) (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2, tìm các giá trị m để x13-x23+x1x2=4