a) Tìm các giá trị tham số m để phương trình x2 – (2m – 3)x + m(m – 3) = 0 có 2 nghiêm phân biệt x1; x2 thỏa mãn điều kiện 2x1 – x2 = 4
b) Cho Parabol (P): \(y=-3x^2\) và đường thẳng (d): \(y=2x-m+9\) .Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
cho (P) : y = x2 và (d) : y = (m-2)x + m - 3. Tìm m để (d) cắt (P) tại 2 điểm phân biệt A(x1,y1) , B(x2,y2) sao cho ΔOAB vuông tại O
Cho parabol (p) y=2x^2 và đường thẳng (d) y=3mx+1-m^2 (m là tham số) a. Tìm m để (d) đi qua A (-1; 9) b. Tìm m để (d) cắt (p) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn x1+x2 = 2x1×x2
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):\(y=2x-m+1\) (với m là tham số) và parabol (P): .
a) Tìm m để đường thẳng (d) đi qua điểm A (–1; 3).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho \(x_1x_2\left(y_1+y_2\right)+6=0\) .
Cho ( P ) y = x2 và đường thẳng d y = ( 2m - 1) x - m + 2
a, Chứng minh rằng với moijm đường thẳng d luôn cắt ( P ) tại 2 điểm phân biệt
b, Tìm các ía trị của m đề dường thẳng d luôn cắt ( P ) tại hai điểm phân biệt A ( x1 ; y1 ) và B ( x2 ; y2 ) thỏa mãn x1y1 + x2y2 =0
Cho parabol (P): y=2x2 và đường thẳng (d): y=4x-m
a) Tìm tọa độ giao điểm của đường thẳng (d) và (P) khi tham số m=6
b) Tìm tham số m để (d) cắt (P) tại hai điểm phân biệt A,B có hoành độ lần lượt là x1;x2 sao cho 2x1+x2= -5
cho HS y = 1/2 x^2 ( P )
a ) vẽ ( P )
b ) CM : đường thẳng ( d ) : y= mx-m+1 luôn cắt ( P ) tại 2 điểm phân biệt A (x1;y1) , B (x2;y2) . Tính y1+y2 theo m .
Cho parabol (P): y= x2 và đường thẳng (d): y= mx +3. Tìm m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn điều kiện x13x2 + x1x23= -93
(mink đag cần gấp)
Cho (P):y=x2 và (d):y=2x+m-1 (m là tham số)
b) (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2, tìm các giá trị m để x13-x23+x1x2=4