a, Xét hoành độ giao điểm của P và d ta có:
x2 = 3x + m2 - 2
\(\Delta=b^2-4ac=4m^2+1>0\) ∀x
=> d luôn cắt P tại hai điểm phân biệt.
a, Xét hoành độ giao điểm của P và d ta có:
x2 = 3x + m2 - 2
\(\Delta=b^2-4ac=4m^2+1>0\) ∀x
=> d luôn cắt P tại hai điểm phân biệt.
Trên mặt phẳng Oxy, cho đường thẳng (d): y = -4 + m2 - 2 và parabol (P): y = x2
a) Chứng minh đường thẳng (d) luôn cắt (P) tại 2 điểm phân biệt với mọi m
b) Gọi x1, x2 là hoành độ hai giao điểm của (d) và (P). Tìm m để x1 ≤ 0 < x2
Cho (P):y=x^2 và (d):y=(2m-1)x +8
Chứng minh với mọi giá trị của m thì (d) luôn cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung. Gọi hoành độ của điểm A và B lần lượt là x1 và x2, giả sử x1<x2. Tìm m để tỉ số giữa khoảng cách từ A và B đến trục Oy bằng 4
Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng d: y=2x+|m|+ 1 ( m là tham số ). a) Chứng minh đường thẳng ở luôn cắt (P) tại 2 điểm phân biệt. b) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1 x2
Cho parabol (P): y= -x2 và đường thẳng (d): y = mx -1
a) Chứng minh rằng với mọi m thì (d) luôn cắt (P) tại 2 điểm phân biệt.
b) Gọi x1; x2 lần lượt là hoành độ các giao điểm của đường thẳng (d) và parabol (P). Tìm giá trị của m để \(x_1^2x_2+x_2^2x_1-x_1x_2=3\)
Cho hai hàm số : (P) y = \(x^2\) và (d) y = 2mx + 2m +1 với m là tham số
Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ x1,x2 sao cho
\(\sqrt{x1+x2}\) + \(\sqrt{3+x1.x2}\) = 2m + 1
trong mặt phẳng tọa độ oxy cho parabol (p) y=3/2x^2 và đường thẳng (d):y=mx+2
a) vẽ đồ thị (p)
b) tìm tất cả các giá trị của m để (d)cắt (p) tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn x1^2 +x2^2 -x1x2 =40
Cho parabol (p) y=2x^2 và đường thẳng (d) y=3mx+1-m^2 (m là tham số) a. Tìm m để (d) đi qua A (-1; 9) b. Tìm m để (d) cắt (p) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn x1+x2 = 2x1×x2
(P): y=x2
(d) y=mx+5
a) Tìm giao điểm của (P) và (d) với m=4. Vẽ ĐTHS
b) Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1 x2. Thỏa mãn \(|x_1-x_2|\)=2
Cho ( P ) y = x2 và đường thẳng d y = ( 2m - 1) x - m + 2
a, Chứng minh rằng với moijm đường thẳng d luôn cắt ( P ) tại 2 điểm phân biệt
b, Tìm các ía trị của m đề dường thẳng d luôn cắt ( P ) tại hai điểm phân biệt A ( x1 ; y1 ) và B ( x2 ; y2 ) thỏa mãn x1y1 + x2y2 =0