cho hinh thang ABCD có AB // CD các tia phân giác của A;B cắt nhâu tại E trên đáy CD chứng minh CD=AD+BC
cho hinh thang ABCD có AB // CD các tia phân giác của A;B cắt nhau tại E trên đáy CD chứng minh CD=AD+BC
Có: \(\widehat{KAB}=\widehat{KAD}\) (AK là tia phân giác \(\widehat{A}\))
Mà: \(\widehat{KAB}=\widehat{AKD}\) (so le trong)
\(\Rightarrow\widehat{AKD}=\widehat{KAD}\)
\(\Rightarrow\Delta ADK\) cân tại D.
\(\Rightarrow AD=KD\) (*)
Lại có: \(\widehat{KBA}=\widehat{KBC}\) (do BK là tia phân giác \(\widehat{B}\))
Mà: \(\widehat{KBA}=\widehat{BKC}\) (so le trong)
\(\Rightarrow\Delta BCK\) cân tại C.
\(\Rightarrow BC=CK\) (**)
Cộng (*) và (**) có: \(AD+BC=KD+CK\)
\(\Rightarrow AD+BC=CD\) (đpcm)
1/Cho hinh thang ABCD có hai đáy là AB và CD (AB<CD).Các tia phân giác cua góc A và góc B cắt nhau tại K,K thuộc CD.Tia phân giác của góc D cắt tia phân giác của góc A tại P.Tia phân giác của góc C cắt tia phân giác của góc B tại Q.cmr:
a)DP vuông góc với AK, CQ vuông góc với BK
b)PQ nằm trên đường trung bình của hình thang ABCD
Ta có : KABˆ=KADˆKAB^=KAD^ ( AK là tia phân giác A^A^ )
Mà KABˆ=AKDˆKAB^=AKD^ ( so le trong )
\Rightarrow AKDˆ=KADˆAKD^=KAD^
\Rightarrow △△ ADK cân tại D
\Rightarrow AD = KD (1)
Lại có : KBAˆ=KBCˆKBA^=KBC^ ( BK là tia phân giác B^B^ )
Mà KBAˆ=BKCˆKBA^=BKC^ ( so le trong )
\Rightarrow KBCˆ=BKCˆKBC^=BKC^
\Rightarrow △△ BCK cân tại C
\Rightarrow BC = CK (2)
Cộng (1) và (2) có :
AD + BC = KD + CK
\Rightarrow AD+BCTổng hai cạnh bên=CDCạnh đáy
cho hinh thang ABCD có AB song song với CD, M là trung điểm của BC. cho biết DM là tia phân giác của góc D. Chứng minh AM là tia phân giác góc A
Gọi E là trung điểm AD. Ta có ME là đường trung bình của hình thang ABCD => ME // CD // AB
Suy ra góc MDC = góc MDE = góc DME (so le trong)
=> Tam giác DEM cân tại E => ME = DE = AE
=> Tam giác AEM cân tại E => góc EAM = góc EMA (1)
mà EM // AB => Góc AME = góc BAM (so le trong) (2)
Từ (1) và (2) suy ra góc EAM = góc BAM
=> AM là tia phân giác góc A (đpcm)
Cho hình thang ABCD có hai đáy là AB và CD (AB<CD). Các tia phân giác góc A và B cắt nhau tại K, K thuộc CD. Tia phân giác góc D cắt tia phân giác góc A tại P. Tia phân giác góc C cắt tia phân giác góc B tại Q. Chứng minh rằng:
a) DP vuông góc với AK, CQ vuông góc với BK
b) PQ nằm trên đường trung bình của hình thang ABCD
cho hình thang ABCD có AB//CD(AB<CD).DB là tia phân giác của góc D.Tính các cạnh của hình thang biết chu vi hình thang bằng 20cm.Em cần gấp ạ.
Câu 6. Cho hình thang cân ABCD (AB//CD), AB > CD có:
a) Chứng minh AC là tia phân giác của góc DAB.
b) Cho biết CD = a. tính chu vi và diện tích của hình thang ABCD theo a.
1. Cho hình thang ABCD ( AB//CD) có các tia phân giác của các góc A và D gặp nhau tại điểm I thuộc cạnh bên BC . Chứng minh AD bằng tổng của hai đáy
2. Hình thang ABCD(AB//CD) có AB=2cm,CD=5cm.Chứng minh AD+BC>3cm
Cho hinh thang ABCD (AB//CD). Các tia phân giác của góc ngoài đinh A và D cắt nhau ở Q. Các tia phân giác tại điểm B và C cắt nhau tai K. a) Chúng minh QK//AB//CD
b)Tính chu vi hinh thang ABCD biet QK=10cm
1. Hình thang ABCD (AB//CD) có B-C=60, D=4/5A. Tính các góc hthang ABCD
2.Cho hthang ABCD (AB//CD), trong đó 2 tia phân giác của 2 góc A, B cắt nhau tại điểm K thuộc đáy CD. C/m tổng 2 cạnh bên = cạnh đáy CD của hthang
3.Cho hình thang ABCD( AD//BC) có AC là tia phân giác của góc A
a) CM: AB=BC.b)chứng minh tứ giác abcd cs ab =bc và ac là tia phân giác góc a .ch/m rằng abcd là hình thang