Cho hbh abcd , 1 đường thẳng đi qua cắt các đg thằng BD,BC và DC lần lượt tại M,E,F.Chứng minh:
a/MA^2=MExMF
b/BExDF=ABxAD
c/ AM/AF;AM/AE=1
Cho hbh abcd , 1 đường thẳng đi qua cắt các đg thằng BD,BC và DC lần lượt tại M,E,F.Chứng minh:
a/MA^2=MExMF
b/BExDF=ABxAD
c/ AM/AF;AM/AE=1
cho hình thang abcd đường thẳng d đi qua A cắt bd ,bc,cd lần lượt tại M ,N,P chứng minh ma^2=mn*mp,1/am=1/an+1/ap
cho hình vuông ABCD KẺ đường thẳng xy đi qua A cắt các đường thẳng BC, Cd lần lượt tại M và N ( đường thẳng xy khác các đường thẳng AB, AD) Đường thẳng kẻ qua A vuông góc với đường thẳng Bc,DC lần lượt tại E,F
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
Gọi O là giao điểm của hai đường thẳng chưa cạnh AD và BC của hình thang ABCD. Đường thằng đi qua O và song song với AB cắt các đường thẳng AC, BD lần lượt tại M, N. CM: OM = ON
giúp e với e đang cần gấp ạ
Xét ΔBON và ΔBCD có
góc BON=góc BCD
góc OBN=góc CBD
=>ΔBON đồng dạng với ΔBCD
=>ON/CD=BO/BC
Xét ΔAMO và ΔACD có
góc AMO=góc ACD
góc MAO=góc CAD
=>ΔAMO đồng dạng với ΔACD
=>MO/CD=AO/AD
=>MO/CD=ON/DC
=>MO=ON
1. Cho tam giác ABC có: BC// MN, AM= 6cm, MB= 2cm. AN= 7cm. Tính NC.
2. Cho tam giác ABC. Từ điểm M cạnh BC, kẻ các đg thẳng // với cạnh AB và AC. Chúng cắt cạnh AC và AB thứ tự là D và E. Tính tổng AE/AB + AD/AC
3. Cho tam giác ABC, trên AC lấy điểm D sao cho AD/DC= 1/2. M là trung điểm BD. Tia AM cắt BC tại E. Tính tỉ số EC/EB
4. Cho tam giác ABC, trên AB lấy điểm M sao cho 2.MA= MB. Qua M kẻ đg
thằng // với BC cắt AC tại N. Qua N kẻ đường thẳng song song với AB cắt BC tại P. Biết rằng PC= 6cm. Tính BC
1, Cho tam giác ABC có I là trung điểm của cạnh BC. Qua I kẻ đường thẳng d cắt AB,AC lần lượt tại M và N . Kẻ dường thẳng d' cắt AC,AB lần lượt tại E,F . CMR : IE=IF
2, cho hình thoi ABCD có góc B bằng 60 độ . Một đường thẳng đi qua D cắt đường kéo dài các cạnh AB,BC lần lượt tại E và F. Gọi M là giao điểm của AF, CE . Chứng minh rằng : AD^2 = AM.AF
Cho hình bình hành ABCD có các đường cao AE, AF.( E thuộc DC, F thuộc BC) Gọi M,N lần lượt là trung điểm của EF, AF. Đường thẳng đi qua A vuông góc với EF cắt CM tại H. Đường trung trực của EF cắt AC tại O. Gọi K là giao điểm của HN và AB. CMR 3 điểm K,O,E thẳng hàng.
(((Làm theo hướng đó đúng rồi.. Tiếp nà )))
HFCE là hình bình hành (tự c/m)
=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)
Mà EC//AK => HF//AK
=> Δ ANK = Δ FNH (g.c.g)
=> AK=HF (2)
Từ (1) và (2) suy ra AK=EC. Mà AK//EC
=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC
=> O cũng là trung điểm của EK
=> Đpcm...
Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .
Ta có : OM , AH cùng vuông góc với EF nên OM // AH
=> M là trung điểm CH ( Vì O là trung điểm của AC )
Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .
Suy ra : HF // CE // AK
Dễ chứng minh △HNF = △KNA ( g.c.g )
Suy ra : Tứ giác AHFK là hình bình hành .
Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .
Suy ra : CKAE là hình chữ nhật .
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )
Cho hình bình hành ABCD có các đường cao AE, AF.( E thuộc DC, F thuộc BC) Gọi M,N lần lượt là trung điểm của EF, AF. Đường thẳng đi qua A vuông góc với EF cắt CM tại H. Đường trung trực của EF cắt AC tại O. Gọi K là giao điểm của HN và AB. CMR 3 điểm K,O,E thẳng hàng.
Thử nhé: Gọi O' là trung điểm của AC.
Tam giác vuông AEC và AFC có trung tuyến lần lượt là EO' và FO' nên O'E=O'F (=1/2AC).
Suy ra: O'EF là tam giác cân. Mà O'M là đường trung tuyến của tam giác O'EF.
nên O'M là đường trung trực của EF.
Vậy O và O' đều là giao điểm của đường trung trực của EF với AC nên O trùng O'. Suy ra O là trung điểm của AC.
Xét tam giác ACH có OA=OC và OM song song AH nên CM=HM.
Xét tứ giác CEHF có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên là hbh. Đến đay làm sao?
Dễ thấy bốn điểm A,F,C,E cùng thuộc đường tròn đường kính AC
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC
Ta có OM và AH cùng vuông góc với EF nên OM // AH suy ra M là trung điểm CH (Vì O là trung điểm AC)
Do đó tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành
Suy ra HF // CE // AK. Dễ chứng minh \(\Delta\)HNF = \(\Delta\)KNA (g.c.g), suy ra tứ giác AHFK là hình bình hành
Vậy AK = HF = CE, kết hợp với AK // CE, AK vuông góc AE suy ra CKAE là hình chữ nhật
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K,O,E thẳng hàng (đpcm).