Tam giác ABC vuông tại A có cạnh huyền BC=6 cm. Biết chiều dài cạnh AB=x; AC=x+2. Diện tích tam giác ABC bằng:
A. 6 cm2
B. 8 cm2
C. 10 cm2
D. 12 cm2
Cho tam giác ABC vuông tại A có AB ngắn hơn AC là 2 cm.
a) Biểu diễn độ dài cạnh huyền BC theo AB
b) Biết chu vi của tam giác ABC là 24 cm. Tính độ dài ba cạnh của tam giác đó.
a) Đặt độ dài cạnh AB là x (\(x > 0\))
Theo giả thiết ta có độ dài \(AC = AB + 2 = x + 2\)
Áp dụng định lý pitago trong tam giác vuông ta có
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{x^2} + {{\left( {x + 2} \right)}^2}} = \sqrt {2{x^2} + 4x + 4} \)
b) Chu vi của tam giác là \(C = AB + AC + BC\)
\( \Rightarrow C = x + \left( {x + 2} \right) + \sqrt {2{x^2} + 4x + 4} = 2x + 2 + \sqrt {2{x^2} + 4x + 4} \)
Theo giả thiết ta có
\(\begin{array}{l}C = 24 \Leftrightarrow 2x + 2 + \sqrt {2{x^2} + 4x + 4} = 24\\ \Leftrightarrow \sqrt {2{x^2} + 4x + 4} = 22 - 2x\\ \Rightarrow 2{x^2} + 4x + 4 = {\left( {22 - 2x} \right)^2}\\ \Rightarrow 2{x^2} + 4x + 4 = 4{x^2} - 88x + 484\\ \Rightarrow 2{x^2} - 92x + 480 = 0\end{array}\)
\( \Rightarrow x = 6\) hoặc \(x = 40\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} + 4x + 4} = 22 - 2x\) ta thấy chỉ có \(x = 6\) thỏa mãn phương trình
Vậy độ dài ba cạnh của tam giác là \(AB = 6;AC = 8\) và \(BC = 10\)(cm)
Cho tam giác vuông ABC có 2 cạnh góc vuông AB = 4,5 cm; AC = 6 cm và cạnh huyền BC = 7,5 cm. Tính chiều cao AH của hình tam giác vuông ABC.
Độ dài chiều cao AH là:
(4,5+6):2 = 5,25 (cm)
Đáp số: 5,25 cm
nhớ k cho mình nha. Yêu nhiều!
cho tam giác vuông ABC có hai cạnh góc vuông AB = 4,5cm, AC = 6 cm, cạnh huyền BC = 7,5cm. Tính chiều cao AH của tam giác vuông ABC.
nếu đặt a=bc; b=ab; c=ac; p=(a+b+c)/2
thì AH =\(\frac{2}{c}\)\(\sqrt{p\left(P-a\right)\left(p-b\right)\left(p-c\right)}\)
Lên lớp tám thì mới đủ khả năng chứng minh
Lên lớp chín thì chứng minh lượng giác sẽ nhanh hơn
cho tam giacs ABC vuoong tại A biết AB/AC bằng 3/4.BC bằng 125 cm . Tính độ dài các cạnh của tam giác vuông và hình chiếu cạnh góc vuông trên cạnh huyền
Bài 1: Cho một tam giác vuông có độ dài hai cạnh góc vuông tỉ lệ 6:8. Biết cạnh huyền dài 55 cm. Hãy tính độ dài hai cạnh góc vuông
Bài 2: Cho tam giác vuông ABC đường vuông góc hạ từ A xuống BC là AH. Biết AH= 6 cm, BH= 4,5 cm, HC= 8 cm.Hỏi tam giác ABC là tam giác gì?.
Bài 2: Cho tam giác ABC vuông cân tại A. Tính độ dài cạnh BC biết AB = AC = 2dm
A. BC = 4 dm B. BC = √6 dm C. BC = 8dm D. BC = √8 dm
Bài 3: Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?
A. 10 cm, 22 cm B. 10 cm, 24 cm C. 12 cm, 24 cm D. 15 cm, 24 cm
Bài 4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 15 cm; 8 cm; 18 cm
B. 21 cm; 20 cm; 29 cm
C. 5 cm; 6 cm; 8 cm
D. 2 cm; 3 cm; 4 cm
Bài 5: Cho tam giác ABC vuông tại A. Kẻ AD ⊥ BC tại D. Biết AB = 7 cm, BD = 4 cm. Khi đó AD có độ dài là:
A. AD = 33 cm
B. AD = 3 cm
C. AD = √33 cm
D. AD = √3 cm
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 2 cm và HC = 6 cm. Tính độ dài các đoạn AH, AB, AC.
Ta có : HB + HC = BC = 8 cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC=2.8\Rightarrow AB=4cm\)
* Áp dụng hệ thức : \(AC^2=CH.BC=6.8\Rightarrow AC=4\sqrt{3}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16\sqrt{3}}{8}=2\sqrt{3}cm\)