Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bi Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 20:20

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

b: ΔBAC đồng dạng vơi ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

c: ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

Hà Lê
Xem chi tiết
Nguyễn Huy Tú
20 tháng 3 2022 lúc 11:18

a, Xét tam giác ABC và tam giác HBA có 

^B _ chung ; ^BAC = ^HBA = 900

Vậy tam giác ABC ~ tam giác HBA (g.g) 

b, Xét tam giác AHC và tam giác BHA ta có 

^AHC = ^BHA = 900

^HAC = ^HBA ( cùng phụ ^HAB ) 

Vậy tam giác AHC ~ tam giác BHA (g.g) 

\(\dfrac{AH}{BH}=\dfrac{HC}{AH}\Rightarrow AH^2=HC.HB\)

Hoàng Như Đàm
Xem chi tiết
Duy Vũ Nguyễn
5 tháng 5 2022 lúc 15:51

\(\wr\)

Kon Kon
Xem chi tiết
Thúy Vy Nguyễn ngọc
Xem chi tiết
Nguyễn Hoàng Anh
7 tháng 1 2022 lúc 15:33

a.

Xét tam giác ABC vuông tại A, có:

AB^2 + AC^2 = BC^2 (Định Lý Pytago) => BC^2 = 25+144 = 169

=> BC = 13 (cm)

 

sinB = AC/BC = 12/13 => B = 67.4 (độ)

Quỳnh Như Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 10:07

a: Xét ΔAHB vuông tạiH và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: AH=3*4/5=2,4cm

c: ΔABC vuông tại A có HA là đường cao

nên AB^2=BH*BC

Thanh Bình
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 7:39

\(a,\text{Áp dụng PTG:}BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \text{Áp dụng HTL:}\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\\ b,\text{Áp dụng HTL:}\left\{{}\begin{matrix}AM\cdot AB=AH^2\\AN\cdot AC=AH^2\end{matrix}\right.\\ \Rightarrow AM\cdot AB=AN\cdot AC\)

Xem chi tiết
Nguyễn Huy Tú
15 tháng 7 2021 lúc 12:53

undefined

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 13:44

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{BH}{BA}=\dfrac{BA}{BC}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{BH}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)

Suy ra: BH=1,8cm; AH=2,4cm

Tiến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 15:18

a: Xet ΔHBA và ΔABC có

góc BHA=góc BAC

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A có AH vuông góc BC

nên BA^2=BH*BC

\(AB=\sqrt{3\cdot12}=6\left(cm\right)\)

\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

c: Xet ΔCAE có KD//AE
nên KD/AE=CK/CE

Xét ΔCEB có KH//EB

nên KH/EB=CK/CE=KD/AE
mà AE=EB

nên KH=KD